{"title":"利用多种数据驱动方法分析无信号交叉口基础设施改善行人安全的有效性","authors":"Shengqi Liu, Harry Evdorides","doi":"10.1016/j.iatssr.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effectiveness of unsignalized crossings to enhance pedestrian safety through a robust data-driven approach utilizing multiple machine learning models, including the statistical classifier Logistic Regression, Decision Tree, Random Forest, and Neural Network Multi-Layer Perceptron (MLP). While numerous studies have applied predictive models to traffic crash data, few have systematically analysed pedestrian crash severity at unsignalized crossings using multiple machine learning algorithms. By leveraging historical crash data from the UK's STATS19 database, key factors influencing pedestrian safety at unsignalized crossings were identified and analysed. The research highlights the superior predictive performance of Random Forest and MLP models, with accuracies of 84 % and 86 %, respectively, underscoring their capability to handle complex, nonlinear relationships in crash data. Feature importance analysis revealed critical determinants of crash severity. The findings emphasize the need for targeted interventions to mitigate crash severity of crash outcomes. Despite challenges like underreporting and data imputation biases, this study provides valuable insights into the role of infrastructure in pedestrian safety, offering a foundation for policy recommendations and future research on improving unsignalized crossing designs.</div></div>","PeriodicalId":47059,"journal":{"name":"IATSS Research","volume":"49 2","pages":"Pages 271-279"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysing the effectiveness of unsignalized crossing infrastructure in improving pedestrian safety using multiple data-driven approaches\",\"authors\":\"Shengqi Liu, Harry Evdorides\",\"doi\":\"10.1016/j.iatssr.2025.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effectiveness of unsignalized crossings to enhance pedestrian safety through a robust data-driven approach utilizing multiple machine learning models, including the statistical classifier Logistic Regression, Decision Tree, Random Forest, and Neural Network Multi-Layer Perceptron (MLP). While numerous studies have applied predictive models to traffic crash data, few have systematically analysed pedestrian crash severity at unsignalized crossings using multiple machine learning algorithms. By leveraging historical crash data from the UK's STATS19 database, key factors influencing pedestrian safety at unsignalized crossings were identified and analysed. The research highlights the superior predictive performance of Random Forest and MLP models, with accuracies of 84 % and 86 %, respectively, underscoring their capability to handle complex, nonlinear relationships in crash data. Feature importance analysis revealed critical determinants of crash severity. The findings emphasize the need for targeted interventions to mitigate crash severity of crash outcomes. Despite challenges like underreporting and data imputation biases, this study provides valuable insights into the role of infrastructure in pedestrian safety, offering a foundation for policy recommendations and future research on improving unsignalized crossing designs.</div></div>\",\"PeriodicalId\":47059,\"journal\":{\"name\":\"IATSS Research\",\"volume\":\"49 2\",\"pages\":\"Pages 271-279\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IATSS Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0386111225000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IATSS Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0386111225000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Analysing the effectiveness of unsignalized crossing infrastructure in improving pedestrian safety using multiple data-driven approaches
This study investigates the effectiveness of unsignalized crossings to enhance pedestrian safety through a robust data-driven approach utilizing multiple machine learning models, including the statistical classifier Logistic Regression, Decision Tree, Random Forest, and Neural Network Multi-Layer Perceptron (MLP). While numerous studies have applied predictive models to traffic crash data, few have systematically analysed pedestrian crash severity at unsignalized crossings using multiple machine learning algorithms. By leveraging historical crash data from the UK's STATS19 database, key factors influencing pedestrian safety at unsignalized crossings were identified and analysed. The research highlights the superior predictive performance of Random Forest and MLP models, with accuracies of 84 % and 86 %, respectively, underscoring their capability to handle complex, nonlinear relationships in crash data. Feature importance analysis revealed critical determinants of crash severity. The findings emphasize the need for targeted interventions to mitigate crash severity of crash outcomes. Despite challenges like underreporting and data imputation biases, this study provides valuable insights into the role of infrastructure in pedestrian safety, offering a foundation for policy recommendations and future research on improving unsignalized crossing designs.
期刊介绍:
First published in 1977 as an international journal sponsored by the International Association of Traffic and Safety Sciences, IATSS Research has contributed to the dissemination of interdisciplinary wisdom on ideal mobility, particularly in Asia. IATSS Research is an international refereed journal providing a platform for the exchange of scientific findings on transportation and safety across a wide range of academic fields, with particular emphasis on the links between scientific findings and practice in society and cultural contexts. IATSS Research welcomes submission of original research articles and reviews that satisfy the following conditions: 1.Relevant to transportation and safety, and the multiple impacts of transportation systems on security, human health, and the environment. 2.Contains important policy and practical implications based on scientific evidence in the applicable academic field. In addition to welcoming general submissions, IATSS Research occasionally plans and publishes special feature sections and special issues composed of invited articles addressing specific topics.