Viet Hoang Ho , Hidenori Morita , Felix Bachofer , Thanh Ha Ho
{"title":"改进的越南中部森林地上生物量密度估算","authors":"Viet Hoang Ho , Hidenori Morita , Felix Bachofer , Thanh Ha Ho","doi":"10.1016/j.ecolmodel.2025.111242","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that account for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with coefficient of determination (R<sup>2</sup>), root mean square error (RMSE), and mean absolute error (MAE) achieving 0.75, 39.15 t.ha<sup>-1</sup>, and 32.20 t.ha<sup>-1</sup>, respectively. Incorporating interpolated residuals by ordinary kriging and co-kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74–7.04 % in R<sup>2</sup>, 8.73–10.91 % in RMSE, and 13.62–15.27 % in MAE, yet these gains remained limited. Although RFOK achieved marginally better accuracy (R<sup>2</sup> = 0.80, RMSE = 34.88 t.ha<sup>-1</sup>, MAE = 27.28 t.ha<sup>-1</sup>) compared to RFCK (R<sup>2</sup> = 0.79, RMSE = 35.73 t.ha<sup>-1</sup>, MAE = 27.81 t.ha<sup>-1</sup>), the latter reduced estimation bias more effectively, likely due to the inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon accounting in tropical ecosystems.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"508 ","pages":"Article 111242"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced aboveground biomass density estimation in Central Vietnamese forests\",\"authors\":\"Viet Hoang Ho , Hidenori Morita , Felix Bachofer , Thanh Ha Ho\",\"doi\":\"10.1016/j.ecolmodel.2025.111242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that account for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with coefficient of determination (R<sup>2</sup>), root mean square error (RMSE), and mean absolute error (MAE) achieving 0.75, 39.15 t.ha<sup>-1</sup>, and 32.20 t.ha<sup>-1</sup>, respectively. Incorporating interpolated residuals by ordinary kriging and co-kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74–7.04 % in R<sup>2</sup>, 8.73–10.91 % in RMSE, and 13.62–15.27 % in MAE, yet these gains remained limited. Although RFOK achieved marginally better accuracy (R<sup>2</sup> = 0.80, RMSE = 34.88 t.ha<sup>-1</sup>, MAE = 27.28 t.ha<sup>-1</sup>) compared to RFCK (R<sup>2</sup> = 0.79, RMSE = 35.73 t.ha<sup>-1</sup>, MAE = 27.81 t.ha<sup>-1</sup>), the latter reduced estimation bias more effectively, likely due to the inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon accounting in tropical ecosystems.</div></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"508 \",\"pages\":\"Article 111242\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380025002285\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025002285","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Enhanced aboveground biomass density estimation in Central Vietnamese forests
Accurate estimation of spatially explicit forest aboveground biomass density (AGBD) is essential for supporting climate change mitigation strategies. Recent studies have demonstrated the predictive effectiveness of the random forest (RF) algorithm in forest AGBD estimation utilizing multi-source remote sensing (RS) data. However, the RF-based estimates may be further enhanced by integrating RF with kriging techniques that account for spatial autocorrelation in model residuals. Therefore, we investigated the performance of random forest ordinary kriging (RFOK) and random forest co-kriging (RFCK) for estimating AGBD in Central Vietnamese forests using Advanced Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2), Sentinel-1 (S1), and Sentinel-2 (S2) imageries. 277 predictors, including spectral bands, radar backscatter coefficients, vegetation indices, biophysical variables, and texture metrics, were derived from these RS datasets and statistically linked to field measurements from 104 geo-referenced forest inventory plots. The results showed that textures, modified chlorophyll absorption ratio index (MCARI), and radar backscatters were key contributors to AGBD variability. The fusion of ALOS-2 PALSAR-2 and S2 data yielded the highest RF performance, with coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) achieving 0.75, 39.15 t.ha-1, and 32.20 t.ha-1, respectively. Incorporating interpolated residuals by ordinary kriging and co-kriging into RF predictions enhanced estimation accuracy, with relative improvements of 5.74–7.04 % in R2, 8.73–10.91 % in RMSE, and 13.62–15.27 % in MAE, yet these gains remained limited. Although RFOK achieved marginally better accuracy (R2 = 0.80, RMSE = 34.88 t.ha-1, MAE = 27.28 t.ha-1) compared to RFCK (R2 = 0.79, RMSE = 35.73 t.ha-1, MAE = 27.81 t.ha-1), the latter reduced estimation bias more effectively, likely due to the inclusion of elevation as a covariate in the co-kriging process. These findings underscore the potential of the hybrid RF-kriging frameworks for improving spatial AGBD estimation, offering a robust approach for carbon accounting in tropical ecosystems.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).