场位错力学,Burgers矢量守恒,以及位错动力学的增强型Peierls模型

IF 3.4 3区 工程技术 Q1 MECHANICS
Amit Acharya
{"title":"场位错力学,Burgers矢量守恒,以及位错动力学的增强型Peierls模型","authors":"Amit Acharya","doi":"10.1016/j.ijsolstr.2025.113491","DOIUrl":null,"url":null,"abstract":"<div><div>Dissipative models for the quasi-static and dynamic response due to slip in an elastic body containing a single slip plane of vanishing thickness are developed. Discrete dislocations with continuously distributed cores can glide on this plane, and the models are developed as special cases of a fully three-dimensional theory of plasticity induced by dislocation motion. The reduced models are compared and contrasted with the augmented Peierls model of dislocation dynamics. A primary distinguishing feature of the reduced models is the a-priori accounting of space–time conservation of Burgers vector during dislocation evolution. A physical shortcoming of the developed models as well as the Peierls model with regard to a dependence on the choice of a distinguished, coherent reference configuration is discussed, and a testable model without such dependence is also proposed.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"320 ","pages":"Article 113491"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field Dislocation Mechanics, Conservation of Burgers vector, and the augmented Peierls model of dislocation dynamics\",\"authors\":\"Amit Acharya\",\"doi\":\"10.1016/j.ijsolstr.2025.113491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dissipative models for the quasi-static and dynamic response due to slip in an elastic body containing a single slip plane of vanishing thickness are developed. Discrete dislocations with continuously distributed cores can glide on this plane, and the models are developed as special cases of a fully three-dimensional theory of plasticity induced by dislocation motion. The reduced models are compared and contrasted with the augmented Peierls model of dislocation dynamics. A primary distinguishing feature of the reduced models is the a-priori accounting of space–time conservation of Burgers vector during dislocation evolution. A physical shortcoming of the developed models as well as the Peierls model with regard to a dependence on the choice of a distinguished, coherent reference configuration is discussed, and a testable model without such dependence is also proposed.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"320 \",\"pages\":\"Article 113491\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002076832500277X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002076832500277X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

建立了含厚度消失的单滑移面弹性体滑移的准静态和动态响应的耗散模型。具有连续分布核的离散位错可以在这个平面上滑动,并且模型是作为位错运动引起的全三维塑性理论的特殊情况而发展起来的。将简化模型与位错动力学的增强型Peierls模型进行了比较。简化模型的一个主要特点是先验地考虑了位错演化过程中Burgers矢量的时空守恒。讨论了已开发模型和佩尔斯模型在依赖于选择不同的、连贯的参考构型方面的物理缺陷,并提出了一个没有这种依赖的可测试模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field Dislocation Mechanics, Conservation of Burgers vector, and the augmented Peierls model of dislocation dynamics
Dissipative models for the quasi-static and dynamic response due to slip in an elastic body containing a single slip plane of vanishing thickness are developed. Discrete dislocations with continuously distributed cores can glide on this plane, and the models are developed as special cases of a fully three-dimensional theory of plasticity induced by dislocation motion. The reduced models are compared and contrasted with the augmented Peierls model of dislocation dynamics. A primary distinguishing feature of the reduced models is the a-priori accounting of space–time conservation of Burgers vector during dislocation evolution. A physical shortcoming of the developed models as well as the Peierls model with regard to a dependence on the choice of a distinguished, coherent reference configuration is discussed, and a testable model without such dependence is also proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信