{"title":"自动学术论文评审的大型语言模型:综述","authors":"Zhenzhen Zhuang , Jiandong Chen , Hongfeng Xu , Yuwen Jiang , Jialiang Lin","doi":"10.1016/j.inffus.2025.103332","DOIUrl":null,"url":null,"abstract":"<div><div>Large language models (LLMs) have significantly impacted human society, influencing various domains. Among them, academia is not simply a domain affected by LLMs, but it is also the pivotal force in the development of LLMs. In academic publication, this phenomenon is represented during the incorporation of LLMs into the peer review mechanism for reviewing manuscripts. LLMs hold transformative potential for the full-scale implementation of automated scholarly paper review (ASPR), but they also pose new issues and challenges that need to be addressed. In this survey paper, we aim to provide a holistic view of ASPR in the era of LLMs. We begin with a survey to find out which LLMs are used to conduct ASPR. Then, we review what ASPR-related technological bottlenecks have been solved with the incorporation of LLM technology. After that, we move on to explore new methods, new datasets, new source code, and new online systems that come with LLMs for ASPR. Furthermore, we summarize the performance and issues of LLMs in ASPR, and investigate the attitudes and reactions of publishers and academia to ASPR. Lastly, we discuss the challenges and future directions associated with the development of LLMs for ASPR. This survey serves as an inspirational reference for the researchers and can promote the progress of ASPR for its actual implementation.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"124 ","pages":"Article 103332"},"PeriodicalIF":15.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language models for automated scholarly paper review: A survey\",\"authors\":\"Zhenzhen Zhuang , Jiandong Chen , Hongfeng Xu , Yuwen Jiang , Jialiang Lin\",\"doi\":\"10.1016/j.inffus.2025.103332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large language models (LLMs) have significantly impacted human society, influencing various domains. Among them, academia is not simply a domain affected by LLMs, but it is also the pivotal force in the development of LLMs. In academic publication, this phenomenon is represented during the incorporation of LLMs into the peer review mechanism for reviewing manuscripts. LLMs hold transformative potential for the full-scale implementation of automated scholarly paper review (ASPR), but they also pose new issues and challenges that need to be addressed. In this survey paper, we aim to provide a holistic view of ASPR in the era of LLMs. We begin with a survey to find out which LLMs are used to conduct ASPR. Then, we review what ASPR-related technological bottlenecks have been solved with the incorporation of LLM technology. After that, we move on to explore new methods, new datasets, new source code, and new online systems that come with LLMs for ASPR. Furthermore, we summarize the performance and issues of LLMs in ASPR, and investigate the attitudes and reactions of publishers and academia to ASPR. Lastly, we discuss the challenges and future directions associated with the development of LLMs for ASPR. This survey serves as an inspirational reference for the researchers and can promote the progress of ASPR for its actual implementation.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"124 \",\"pages\":\"Article 103332\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525004051\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525004051","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Large language models for automated scholarly paper review: A survey
Large language models (LLMs) have significantly impacted human society, influencing various domains. Among them, academia is not simply a domain affected by LLMs, but it is also the pivotal force in the development of LLMs. In academic publication, this phenomenon is represented during the incorporation of LLMs into the peer review mechanism for reviewing manuscripts. LLMs hold transformative potential for the full-scale implementation of automated scholarly paper review (ASPR), but they also pose new issues and challenges that need to be addressed. In this survey paper, we aim to provide a holistic view of ASPR in the era of LLMs. We begin with a survey to find out which LLMs are used to conduct ASPR. Then, we review what ASPR-related technological bottlenecks have been solved with the incorporation of LLM technology. After that, we move on to explore new methods, new datasets, new source code, and new online systems that come with LLMs for ASPR. Furthermore, we summarize the performance and issues of LLMs in ASPR, and investigate the attitudes and reactions of publishers and academia to ASPR. Lastly, we discuss the challenges and future directions associated with the development of LLMs for ASPR. This survey serves as an inspirational reference for the researchers and can promote the progress of ASPR for its actual implementation.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.