分数阶p-泊松方程的梯度估计

IF 2.3 1区 数学 Q1 MATHEMATICS
Verena Bögelein, Frank Duzaar, Naian Liao, Kristian Moring
{"title":"分数阶p-泊松方程的梯度估计","authors":"Verena Bögelein,&nbsp;Frank Duzaar,&nbsp;Naian Liao,&nbsp;Kristian Moring","doi":"10.1016/j.matpur.2025.103764","DOIUrl":null,"url":null,"abstract":"<div><div>We consider local weak solutions to the fractional <em>p</em>-Poisson equation of order <em>s</em>, i.e. <span><math><msup><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi></math></span>. In the range <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></math></span> we prove Calderón &amp; Zygmund type estimates at the gradient level. More precisely, we show for any <span><math><mi>q</mi><mo>&gt;</mo><mn>1</mn></math></span> that<span><span><span><math><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mfrac><mrow><mi>q</mi><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup><mspace></mspace><mo>⟹</mo><mspace></mspace><mi>∇</mi><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mi>q</mi><mi>p</mi></mrow></msubsup><mo>.</mo></math></span></span></span> The qualitative result is accompanied by a local quantitative estimate.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103764"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient estimates for the fractional p-Poisson equation\",\"authors\":\"Verena Bögelein,&nbsp;Frank Duzaar,&nbsp;Naian Liao,&nbsp;Kristian Moring\",\"doi\":\"10.1016/j.matpur.2025.103764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider local weak solutions to the fractional <em>p</em>-Poisson equation of order <em>s</em>, i.e. <span><math><msup><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi></math></span>. In the range <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>,</mo><mn>1</mn><mo>)</mo></math></span> we prove Calderón &amp; Zygmund type estimates at the gradient level. More precisely, we show for any <span><math><mi>q</mi><mo>&gt;</mo><mn>1</mn></math></span> that<span><span><span><math><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mfrac><mrow><mi>q</mi><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup><mspace></mspace><mo>⟹</mo><mspace></mspace><mi>∇</mi><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mi>q</mi><mi>p</mi></mrow></msubsup><mo>.</mo></math></span></span></span> The qualitative result is accompanied by a local quantitative estimate.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103764\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001084\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001084","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑s阶分数阶p-Poisson方程的局部弱解,即(−Δp)su=f。在范围p>;1和s∈(p−1p,1)中证明Calderón &;Zygmund型在梯度水平上估计。更准确地说,我们证明对于任意q>;1, f∈Llocqpp−1 ÷∇u∈Llocqp。定性结果伴随着局部定量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient estimates for the fractional p-Poisson equation
We consider local weak solutions to the fractional p-Poisson equation of order s, i.e. (Δp)su=f. In the range p>1 and s(p1p,1) we prove Calderón & Zygmund type estimates at the gradient level. More precisely, we show for any q>1 thatfLlocqpp1uLlocqp. The qualitative result is accompanied by a local quantitative estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信