Bret A. Marckx, Hunter Maclennan and Ömer Özgür Capraz*,
{"title":"利用成像技术探测锌离子电池循环过程中氧化钒阴极产生的电化学应变","authors":"Bret A. Marckx, Hunter Maclennan and Ömer Özgür Capraz*, ","doi":"10.1021/cbmi.5c0000310.1021/cbmi.5c00003","DOIUrl":null,"url":null,"abstract":"<p >Aqueous batteries have received a great deal of attention for grid-scale energy storage applications but suffer from low-capacity retention and utilization. A lack of understanding of chemomechanical instabilities and charge storage mechanisms in cathodes limits the development of advanced aqueous batteries. To shed light on these instabilities, operando techniques are necessary to probe the complex interplay between electrochemistry and mechanics during cycling. Here, we report an operando technique to probe electrochemical strains in cathodes in aqueous electrolytes during battery cycling via optical imaging and digital image correlation. Operando mechanical measurements indicate that the cathode undergoes positive strain generation during discharge and negative generation during charge. Strain derivatives reveal a close correlation between electrochemical and mechanical behaviors, highlighting the connection between electrochemistry and mechanics. This operando imaging technique is broadly applicable and paves the way for a deeper understanding of deformation mechanisms in aqueous, multivalent ion battery materials.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 6","pages":"352–358 352–358"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.5c00003","citationCount":"0","resultStr":"{\"title\":\"Probing Electrochemical Strain Generation in Vanadium Oxide Cathodes during Cycling of Aqueous Zinc-Ion Batteries via Imaging Technique\",\"authors\":\"Bret A. Marckx, Hunter Maclennan and Ömer Özgür Capraz*, \",\"doi\":\"10.1021/cbmi.5c0000310.1021/cbmi.5c00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aqueous batteries have received a great deal of attention for grid-scale energy storage applications but suffer from low-capacity retention and utilization. A lack of understanding of chemomechanical instabilities and charge storage mechanisms in cathodes limits the development of advanced aqueous batteries. To shed light on these instabilities, operando techniques are necessary to probe the complex interplay between electrochemistry and mechanics during cycling. Here, we report an operando technique to probe electrochemical strains in cathodes in aqueous electrolytes during battery cycling via optical imaging and digital image correlation. Operando mechanical measurements indicate that the cathode undergoes positive strain generation during discharge and negative generation during charge. Strain derivatives reveal a close correlation between electrochemical and mechanical behaviors, highlighting the connection between electrochemistry and mechanics. This operando imaging technique is broadly applicable and paves the way for a deeper understanding of deformation mechanisms in aqueous, multivalent ion battery materials.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"3 6\",\"pages\":\"352–358 352–358\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.5c00003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.5c00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.5c00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probing Electrochemical Strain Generation in Vanadium Oxide Cathodes during Cycling of Aqueous Zinc-Ion Batteries via Imaging Technique
Aqueous batteries have received a great deal of attention for grid-scale energy storage applications but suffer from low-capacity retention and utilization. A lack of understanding of chemomechanical instabilities and charge storage mechanisms in cathodes limits the development of advanced aqueous batteries. To shed light on these instabilities, operando techniques are necessary to probe the complex interplay between electrochemistry and mechanics during cycling. Here, we report an operando technique to probe electrochemical strains in cathodes in aqueous electrolytes during battery cycling via optical imaging and digital image correlation. Operando mechanical measurements indicate that the cathode undergoes positive strain generation during discharge and negative generation during charge. Strain derivatives reveal a close correlation between electrochemical and mechanical behaviors, highlighting the connection between electrochemistry and mechanics. This operando imaging technique is broadly applicable and paves the way for a deeper understanding of deformation mechanisms in aqueous, multivalent ion battery materials.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging