磺化水平对水合无氟共聚物的渗透形态和质子电导率的影响:实验与模拟

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sol Mi Oh, Victoria S. Lee, William F. Drayer, Max S. Win, Lindsay F. Jones, Courtney M. Leo, Justin G. Kennemur, Amalie L. Frischknecht* and Karen I. Winey*, 
{"title":"磺化水平对水合无氟共聚物的渗透形态和质子电导率的影响:实验与模拟","authors":"Sol Mi Oh,&nbsp;Victoria S. Lee,&nbsp;William F. Drayer,&nbsp;Max S. Win,&nbsp;Lindsay F. Jones,&nbsp;Courtney M. Leo,&nbsp;Justin G. Kennemur,&nbsp;Amalie L. Frischknecht* and Karen I. Winey*,&nbsp;","doi":"10.1021/jacsau.5c0021810.1021/jacsau.5c00218","DOIUrl":null,"url":null,"abstract":"<p >Using all-atom molecular dynamics simulations and a variety of experimental methods, we previously reported on a linear polyethylene with pendant phenyl sulfonated groups precisely on every fifth carbon along the backbone. With increasing relative humidity this fluorine-free polymer self-assembled to form nanoscale water channels and exhibited exceptional proton conductivity. Expanding upon those findings, here we explore partially sulfonated random copolymers, referred to as <i>p</i>5PhSH-<i>Y</i>. Using either acetyl sulfate or sulfuric acid, a wide range of sulfonation levels were prepared (<i>Y</i> = 34–98%) corresponding to ion-exchange capacities (IEC) of 2.0–4.4 mmol/g. Combining experimental techniques and all-atom molecular dynamics simulations, we study the effect of <i>Y</i> on water uptake, nanoscale morphology, and the proton/water transport properties of <i>p</i>5PhSH-<i>Y</i>. The proton conductivity of <i>p</i>5PhSH-<i>Y</i> increases with relative humidity and with <i>Y</i> and achieves values in excess of 0.1 S/cm. These high conductivities are attributed to high IEC and well-developed nanoscale percolated hydrophilic domains made possible by the flexible backbone. We quantitatively describe the nature of the water channels using the characteristic distance, channel width distribution, the area per sulfonate group at the hydrophilic/hydrophobic interface, and the fractal dimension. Notably, the channel widths and the areas per sulfonate group are nominally independent of the level of sulfonation, while depending significantly on the level of hydration. The fractal dimension of the water channels correlates strongly with the water diffusion coefficients calculated from the molecular dynamics (MD) simulations. These findings demonstrate that the <i>p</i>5PhSH-<i>Y</i> hydrocarbon copolymers can be modified to tune properties, particularly proton conductivity.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 6","pages":"2641–2653 2641–2653"},"PeriodicalIF":8.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00218","citationCount":"0","resultStr":"{\"title\":\"Effect of Sulfonation Level on the Percolated Morphology and Proton Conductivity of Hydrated Fluorine-Free Copolymers: Experiments and Simulations\",\"authors\":\"Sol Mi Oh,&nbsp;Victoria S. Lee,&nbsp;William F. Drayer,&nbsp;Max S. Win,&nbsp;Lindsay F. Jones,&nbsp;Courtney M. Leo,&nbsp;Justin G. Kennemur,&nbsp;Amalie L. Frischknecht* and Karen I. Winey*,&nbsp;\",\"doi\":\"10.1021/jacsau.5c0021810.1021/jacsau.5c00218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Using all-atom molecular dynamics simulations and a variety of experimental methods, we previously reported on a linear polyethylene with pendant phenyl sulfonated groups precisely on every fifth carbon along the backbone. With increasing relative humidity this fluorine-free polymer self-assembled to form nanoscale water channels and exhibited exceptional proton conductivity. Expanding upon those findings, here we explore partially sulfonated random copolymers, referred to as <i>p</i>5PhSH-<i>Y</i>. Using either acetyl sulfate or sulfuric acid, a wide range of sulfonation levels were prepared (<i>Y</i> = 34–98%) corresponding to ion-exchange capacities (IEC) of 2.0–4.4 mmol/g. Combining experimental techniques and all-atom molecular dynamics simulations, we study the effect of <i>Y</i> on water uptake, nanoscale morphology, and the proton/water transport properties of <i>p</i>5PhSH-<i>Y</i>. The proton conductivity of <i>p</i>5PhSH-<i>Y</i> increases with relative humidity and with <i>Y</i> and achieves values in excess of 0.1 S/cm. These high conductivities are attributed to high IEC and well-developed nanoscale percolated hydrophilic domains made possible by the flexible backbone. We quantitatively describe the nature of the water channels using the characteristic distance, channel width distribution, the area per sulfonate group at the hydrophilic/hydrophobic interface, and the fractal dimension. Notably, the channel widths and the areas per sulfonate group are nominally independent of the level of sulfonation, while depending significantly on the level of hydration. The fractal dimension of the water channels correlates strongly with the water diffusion coefficients calculated from the molecular dynamics (MD) simulations. These findings demonstrate that the <i>p</i>5PhSH-<i>Y</i> hydrocarbon copolymers can be modified to tune properties, particularly proton conductivity.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 6\",\"pages\":\"2641–2653 2641–2653\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00218\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.5c00218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用全原子分子动力学模拟和各种实验方法,我们先前报道了一种线性聚乙烯,其主链上每五个碳上都有苯基磺酸基团。随着相对湿度的增加,这种无氟聚合物自组装形成纳米级水通道,并表现出优异的质子导电性。在这些发现的基础上,我们探索了部分磺化的无规共聚物,称为p5PhSH-Y。用乙酰硫酸或硫酸制备的磺化水平范围很广(Y = 34-98%),离子交换容量(IEC)为2.0-4.4 mmol/g。结合实验技术和全原子分子动力学模拟,研究了Y对p5PhSH-Y的吸水、纳米形貌和质子/水输运性质的影响。p5PhSH-Y的质子电导率随相对湿度和Y的增加而增加,并达到超过0.1 S/cm的值。这些高电导率归因于高IEC和发达的纳米级渗透亲水性结构域,这些结构域是由柔性骨架形成的。我们使用特征距离、通道宽度分布、亲疏水界面上每个磺酸基的面积和分形维数来定量描述水通道的性质。值得注意的是,通道宽度和每个磺酸基团的面积在名义上与磺化水平无关,而在很大程度上取决于水化水平。水通道的分形维数与分子动力学(MD)模拟计算的水扩散系数密切相关。这些发现表明p5PhSH-Y碳氢化合物共聚物可以被修饰以调整性质,特别是质子导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Sulfonation Level on the Percolated Morphology and Proton Conductivity of Hydrated Fluorine-Free Copolymers: Experiments and Simulations

Using all-atom molecular dynamics simulations and a variety of experimental methods, we previously reported on a linear polyethylene with pendant phenyl sulfonated groups precisely on every fifth carbon along the backbone. With increasing relative humidity this fluorine-free polymer self-assembled to form nanoscale water channels and exhibited exceptional proton conductivity. Expanding upon those findings, here we explore partially sulfonated random copolymers, referred to as p5PhSH-Y. Using either acetyl sulfate or sulfuric acid, a wide range of sulfonation levels were prepared (Y = 34–98%) corresponding to ion-exchange capacities (IEC) of 2.0–4.4 mmol/g. Combining experimental techniques and all-atom molecular dynamics simulations, we study the effect of Y on water uptake, nanoscale morphology, and the proton/water transport properties of p5PhSH-Y. The proton conductivity of p5PhSH-Y increases with relative humidity and with Y and achieves values in excess of 0.1 S/cm. These high conductivities are attributed to high IEC and well-developed nanoscale percolated hydrophilic domains made possible by the flexible backbone. We quantitatively describe the nature of the water channels using the characteristic distance, channel width distribution, the area per sulfonate group at the hydrophilic/hydrophobic interface, and the fractal dimension. Notably, the channel widths and the areas per sulfonate group are nominally independent of the level of sulfonation, while depending significantly on the level of hydration. The fractal dimension of the water channels correlates strongly with the water diffusion coefficients calculated from the molecular dynamics (MD) simulations. These findings demonstrate that the p5PhSH-Y hydrocarbon copolymers can be modified to tune properties, particularly proton conductivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信