Bo Zhou, Chengxin Niu, Wei Mao, Xueye Wang, Zhichao Wu, Zhiwei Wang
{"title":"强化污泥消化的电化学厌氧动态膜生物反应器:揭示分子相互作用和微生物机制","authors":"Bo Zhou, Chengxin Niu, Wei Mao, Xueye Wang, Zhichao Wu, Zhiwei Wang","doi":"10.1016/j.watres.2025.124080","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effects of stepwise external voltages on an electrochemical anaerobic dynamic membrane bioreactor (EC-AnDMBR) for anaerobic digestion of waste activated sludge. Increasing the applied voltage greatly mitigated membrane fouling, reduced the transmembrane pressure increase rate and enhanced both volatile solids digestion and biogas production. The dynamic membrane structure became looser with fewer biofouling substances, attributed to a 42.6 % increase in the sludge-membrane interaction energy barrier at higher voltages. Electrochemical analysis revealed improved electroactivity of the anaerobic sludge, as evidenced by increased conductivity and reduced internal resistance. The proton-coupled electron transfer (PCET) pathway was promoted, indicated by a significant increase in the hydrogen/deuterium kinetic isotope effect from 616 to 25,990. Molecular simulations of dissolved organic matter (DOM) showed an enrichment of amide and quinone groups, along with stronger hydrogen-bonding and π-cation interactions, which may contribute to the PCET process. Moreover, elevated voltages promoted more deterministic microbial community assembly and reduced upstream microbial immigration. Gene upregulation in organic metabolism, electron/proton transport, and methanogenesis further supported enhanced digestion performance via PCET pathway. These findings offer valuable insights into the molecular mechanisms and microbial ecology of EC-AnDMBR systems, advancing the development of more efficient and sustainable sludge treatment technologies.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"285 ","pages":"Article 124080"},"PeriodicalIF":12.4000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electrochemical anaerobic dynamic membrane bioreactor for enhanced sludge digestion: Unveiling molecular interactions and microbial mechanisms\",\"authors\":\"Bo Zhou, Chengxin Niu, Wei Mao, Xueye Wang, Zhichao Wu, Zhiwei Wang\",\"doi\":\"10.1016/j.watres.2025.124080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the effects of stepwise external voltages on an electrochemical anaerobic dynamic membrane bioreactor (EC-AnDMBR) for anaerobic digestion of waste activated sludge. Increasing the applied voltage greatly mitigated membrane fouling, reduced the transmembrane pressure increase rate and enhanced both volatile solids digestion and biogas production. The dynamic membrane structure became looser with fewer biofouling substances, attributed to a 42.6 % increase in the sludge-membrane interaction energy barrier at higher voltages. Electrochemical analysis revealed improved electroactivity of the anaerobic sludge, as evidenced by increased conductivity and reduced internal resistance. The proton-coupled electron transfer (PCET) pathway was promoted, indicated by a significant increase in the hydrogen/deuterium kinetic isotope effect from 616 to 25,990. Molecular simulations of dissolved organic matter (DOM) showed an enrichment of amide and quinone groups, along with stronger hydrogen-bonding and π-cation interactions, which may contribute to the PCET process. Moreover, elevated voltages promoted more deterministic microbial community assembly and reduced upstream microbial immigration. Gene upregulation in organic metabolism, electron/proton transport, and methanogenesis further supported enhanced digestion performance via PCET pathway. These findings offer valuable insights into the molecular mechanisms and microbial ecology of EC-AnDMBR systems, advancing the development of more efficient and sustainable sludge treatment technologies.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"285 \",\"pages\":\"Article 124080\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425009881\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425009881","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
An electrochemical anaerobic dynamic membrane bioreactor for enhanced sludge digestion: Unveiling molecular interactions and microbial mechanisms
This study investigated the effects of stepwise external voltages on an electrochemical anaerobic dynamic membrane bioreactor (EC-AnDMBR) for anaerobic digestion of waste activated sludge. Increasing the applied voltage greatly mitigated membrane fouling, reduced the transmembrane pressure increase rate and enhanced both volatile solids digestion and biogas production. The dynamic membrane structure became looser with fewer biofouling substances, attributed to a 42.6 % increase in the sludge-membrane interaction energy barrier at higher voltages. Electrochemical analysis revealed improved electroactivity of the anaerobic sludge, as evidenced by increased conductivity and reduced internal resistance. The proton-coupled electron transfer (PCET) pathway was promoted, indicated by a significant increase in the hydrogen/deuterium kinetic isotope effect from 616 to 25,990. Molecular simulations of dissolved organic matter (DOM) showed an enrichment of amide and quinone groups, along with stronger hydrogen-bonding and π-cation interactions, which may contribute to the PCET process. Moreover, elevated voltages promoted more deterministic microbial community assembly and reduced upstream microbial immigration. Gene upregulation in organic metabolism, electron/proton transport, and methanogenesis further supported enhanced digestion performance via PCET pathway. These findings offer valuable insights into the molecular mechanisms and microbial ecology of EC-AnDMBR systems, advancing the development of more efficient and sustainable sludge treatment technologies.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.