通过机器学习估计盈利能力分解框架:对盈利预测和财务报表分析的影响

IF 0.4 Q4 ECONOMICS
Oliver Binz, Katherine Schipper, Kevin R. Standridge
{"title":"通过机器学习估计盈利能力分解框架:对盈利预测和财务报表分析的影响","authors":"Oliver Binz, Katherine Schipper, Kevin R. Standridge","doi":"10.1016/j.jacceco.2025.101805","DOIUrl":null,"url":null,"abstract":"We find that nonlinear estimation of profitability decomposition frameworks yields more accurate out-of-sample profitability forecasts than forecasts from both a random walk and linear estimation. The improvements derive from nonlinear estimation and synergies between nonlinear estimation and profitability decomposition frameworks. We analyze three essential financial statement analysis design choices to provide insights for the practice of fundamental analysis and find robust evidence that higher levels of profitability decomposition, focusing on core items, and using up to three years of historical information improve forecast accuracy. We find that our forecasts predict returns and profitability changes before and after controlling for analyst forecasts and common asset pricing factors.","PeriodicalId":42721,"journal":{"name":"International Journal of Economics Management and Accounting","volume":"244 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Profitability Decomposition Frameworks via Machine Learning: Implications for Earnings Forecasting and Financial Statement Analysis\",\"authors\":\"Oliver Binz, Katherine Schipper, Kevin R. Standridge\",\"doi\":\"10.1016/j.jacceco.2025.101805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find that nonlinear estimation of profitability decomposition frameworks yields more accurate out-of-sample profitability forecasts than forecasts from both a random walk and linear estimation. The improvements derive from nonlinear estimation and synergies between nonlinear estimation and profitability decomposition frameworks. We analyze three essential financial statement analysis design choices to provide insights for the practice of fundamental analysis and find robust evidence that higher levels of profitability decomposition, focusing on core items, and using up to three years of historical information improve forecast accuracy. We find that our forecasts predict returns and profitability changes before and after controlling for analyst forecasts and common asset pricing factors.\",\"PeriodicalId\":42721,\"journal\":{\"name\":\"International Journal of Economics Management and Accounting\",\"volume\":\"244 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Economics Management and Accounting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jacceco.2025.101805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Economics Management and Accounting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jacceco.2025.101805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们发现盈利能力分解框架的非线性估计比随机漫步和线性估计的预测产生更准确的样本外盈利能力预测。改进源于非线性估计和非线性估计与盈利能力分解框架之间的协同作用。我们分析了三个基本的财务报表分析设计选择,为基本分析的实践提供见解,并找到强有力的证据,证明更高水平的盈利能力分解,关注核心项目,使用长达三年的历史信息可以提高预测的准确性。我们发现,在控制了分析师预测和常见资产定价因素之后,我们的预测预测了收益和盈利能力的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Profitability Decomposition Frameworks via Machine Learning: Implications for Earnings Forecasting and Financial Statement Analysis
We find that nonlinear estimation of profitability decomposition frameworks yields more accurate out-of-sample profitability forecasts than forecasts from both a random walk and linear estimation. The improvements derive from nonlinear estimation and synergies between nonlinear estimation and profitability decomposition frameworks. We analyze three essential financial statement analysis design choices to provide insights for the practice of fundamental analysis and find robust evidence that higher levels of profitability decomposition, focusing on core items, and using up to three years of historical information improve forecast accuracy. We find that our forecasts predict returns and profitability changes before and after controlling for analyst forecasts and common asset pricing factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信