Federica Piccirillo, Michael Zimmer, Martino Giaquinto, Alberto Micco, Michael Jetter, Peter Michler, Andrea Cusano, Simone Luca Portalupi, Armando Ricciardi
{"title":"一个VCSEL在单模光纤上的单片集成","authors":"Federica Piccirillo, Michael Zimmer, Martino Giaquinto, Alberto Micco, Michael Jetter, Peter Michler, Andrea Cusano, Simone Luca Portalupi, Armando Ricciardi","doi":"10.1515/nanoph-2025-0047","DOIUrl":null,"url":null,"abstract":"The implementation of compact fiber-coupled light sources and devices represents a highly sought through technological goal, in wearable technologies, point-of-care units, telecommunication, and even quantum technology. In particular, a strong reduction of the overall device footprint, still ensuring a compact electrical contacting, would play an important role for electrically driven and electrically controlled devices. Here we show the integration of electrically pumped vertical-cavity surface-emitting lasers on multi-mode and single-mode fibers. The optimized integration technique is enabled by the advanced fiber-to-laser coupling design allowed by a detailed numerical investigation, as well as by an improved technological approach. While for the integration on multimode fibers, an important improvement over state-of-the-art is achieved, the integration on single-mode fiber is here demonstrated for the first time. All experimental results include reproducibility studies to show that the developed technique can be considered for larger scale implementations and are further supported by numerical investigation. This work marks an important step forward in the miniaturization of fiber-based optoelectronics devices which will be highly beneficial for various research and technology developments.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"15 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monolithic integration of one VCSEL on a single mode fiber\",\"authors\":\"Federica Piccirillo, Michael Zimmer, Martino Giaquinto, Alberto Micco, Michael Jetter, Peter Michler, Andrea Cusano, Simone Luca Portalupi, Armando Ricciardi\",\"doi\":\"10.1515/nanoph-2025-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of compact fiber-coupled light sources and devices represents a highly sought through technological goal, in wearable technologies, point-of-care units, telecommunication, and even quantum technology. In particular, a strong reduction of the overall device footprint, still ensuring a compact electrical contacting, would play an important role for electrically driven and electrically controlled devices. Here we show the integration of electrically pumped vertical-cavity surface-emitting lasers on multi-mode and single-mode fibers. The optimized integration technique is enabled by the advanced fiber-to-laser coupling design allowed by a detailed numerical investigation, as well as by an improved technological approach. While for the integration on multimode fibers, an important improvement over state-of-the-art is achieved, the integration on single-mode fiber is here demonstrated for the first time. All experimental results include reproducibility studies to show that the developed technique can be considered for larger scale implementations and are further supported by numerical investigation. This work marks an important step forward in the miniaturization of fiber-based optoelectronics devices which will be highly beneficial for various research and technology developments.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0047\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0047","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Monolithic integration of one VCSEL on a single mode fiber
The implementation of compact fiber-coupled light sources and devices represents a highly sought through technological goal, in wearable technologies, point-of-care units, telecommunication, and even quantum technology. In particular, a strong reduction of the overall device footprint, still ensuring a compact electrical contacting, would play an important role for electrically driven and electrically controlled devices. Here we show the integration of electrically pumped vertical-cavity surface-emitting lasers on multi-mode and single-mode fibers. The optimized integration technique is enabled by the advanced fiber-to-laser coupling design allowed by a detailed numerical investigation, as well as by an improved technological approach. While for the integration on multimode fibers, an important improvement over state-of-the-art is achieved, the integration on single-mode fiber is here demonstrated for the first time. All experimental results include reproducibility studies to show that the developed technique can be considered for larger scale implementations and are further supported by numerical investigation. This work marks an important step forward in the miniaturization of fiber-based optoelectronics devices which will be highly beneficial for various research and technology developments.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.