一个VCSEL在单模光纤上的单片集成

IF 6.6 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Federica Piccirillo, Michael Zimmer, Martino Giaquinto, Alberto Micco, Michael Jetter, Peter Michler, Andrea Cusano, Simone Luca Portalupi, Armando Ricciardi
{"title":"一个VCSEL在单模光纤上的单片集成","authors":"Federica Piccirillo, Michael Zimmer, Martino Giaquinto, Alberto Micco, Michael Jetter, Peter Michler, Andrea Cusano, Simone Luca Portalupi, Armando Ricciardi","doi":"10.1515/nanoph-2025-0047","DOIUrl":null,"url":null,"abstract":"The implementation of compact fiber-coupled light sources and devices represents a highly sought through technological goal, in wearable technologies, point-of-care units, telecommunication, and even quantum technology. In particular, a strong reduction of the overall device footprint, still ensuring a compact electrical contacting, would play an important role for electrically driven and electrically controlled devices. Here we show the integration of electrically pumped vertical-cavity surface-emitting lasers on multi-mode and single-mode fibers. The optimized integration technique is enabled by the advanced fiber-to-laser coupling design allowed by a detailed numerical investigation, as well as by an improved technological approach. While for the integration on multimode fibers, an important improvement over state-of-the-art is achieved, the integration on single-mode fiber is here demonstrated for the first time. All experimental results include reproducibility studies to show that the developed technique can be considered for larger scale implementations and are further supported by numerical investigation. This work marks an important step forward in the miniaturization of fiber-based optoelectronics devices which will be highly beneficial for various research and technology developments.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"15 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monolithic integration of one VCSEL on a single mode fiber\",\"authors\":\"Federica Piccirillo, Michael Zimmer, Martino Giaquinto, Alberto Micco, Michael Jetter, Peter Michler, Andrea Cusano, Simone Luca Portalupi, Armando Ricciardi\",\"doi\":\"10.1515/nanoph-2025-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of compact fiber-coupled light sources and devices represents a highly sought through technological goal, in wearable technologies, point-of-care units, telecommunication, and even quantum technology. In particular, a strong reduction of the overall device footprint, still ensuring a compact electrical contacting, would play an important role for electrically driven and electrically controlled devices. Here we show the integration of electrically pumped vertical-cavity surface-emitting lasers on multi-mode and single-mode fibers. The optimized integration technique is enabled by the advanced fiber-to-laser coupling design allowed by a detailed numerical investigation, as well as by an improved technological approach. While for the integration on multimode fibers, an important improvement over state-of-the-art is achieved, the integration on single-mode fiber is here demonstrated for the first time. All experimental results include reproducibility studies to show that the developed technique can be considered for larger scale implementations and are further supported by numerical investigation. This work marks an important step forward in the miniaturization of fiber-based optoelectronics devices which will be highly beneficial for various research and technology developments.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0047\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0047","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

紧凑型光纤耦合光源和器件的实现代表了一个高度追求的技术目标,在可穿戴技术,医疗点单位,电信,甚至量子技术。特别是,在确保紧凑的电接触的情况下,大大减少整个设备的占地面积,将对电驱动和电控设备发挥重要作用。在这里,我们展示了在多模和单模光纤上集成电泵浦垂直腔表面发射激光器。通过详细的数值研究,采用先进的光纤-激光耦合设计,以及改进的技术方法,实现了优化的集成技术。虽然在多模光纤的集成方面取得了重大进步,但在单模光纤上的集成是第一次展示。所有的实验结果都包括可重复性研究,表明所开发的技术可以考虑更大规模的实施,并得到数值研究的进一步支持。这项工作标志着光纤光电子器件小型化的重要一步,将对各种研究和技术发展非常有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monolithic integration of one VCSEL on a single mode fiber
The implementation of compact fiber-coupled light sources and devices represents a highly sought through technological goal, in wearable technologies, point-of-care units, telecommunication, and even quantum technology. In particular, a strong reduction of the overall device footprint, still ensuring a compact electrical contacting, would play an important role for electrically driven and electrically controlled devices. Here we show the integration of electrically pumped vertical-cavity surface-emitting lasers on multi-mode and single-mode fibers. The optimized integration technique is enabled by the advanced fiber-to-laser coupling design allowed by a detailed numerical investigation, as well as by an improved technological approach. While for the integration on multimode fibers, an important improvement over state-of-the-art is achieved, the integration on single-mode fiber is here demonstrated for the first time. All experimental results include reproducibility studies to show that the developed technique can be considered for larger scale implementations and are further supported by numerical investigation. This work marks an important step forward in the miniaturization of fiber-based optoelectronics devices which will be highly beneficial for various research and technology developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信