具有增强界面兼容性的终端功能化聚合物电解质,用于坚固的固态锂金属电池

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhiyuan Lin, Yunhang Li, Wenbin Zhang, Guanghua Guo, Weihan Chen, Li Zhang, Shanran Yang, Yonggao Xia, Guofa Cai
{"title":"具有增强界面兼容性的终端功能化聚合物电解质,用于坚固的固态锂金属电池","authors":"Zhiyuan Lin, Yunhang Li, Wenbin Zhang, Guanghua Guo, Weihan Chen, Li Zhang, Shanran Yang, Yonggao Xia, Guofa Cai","doi":"10.1016/j.jmst.2025.04.075","DOIUrl":null,"url":null,"abstract":"Solid-state lithium metal batteries (SSLMBs) with high-voltage cathodes offer significant potential for next-generation energy storage but face challenges related to poor oxidative stability and interfacial incompatibility of polymer electrolytes (PEs). Herein, terminally functionalized polymer electrolytes (TFPEs) with chain polymer backbones were designed to enhance the antioxidation resistance and interfacial compatibility. Introduced the electron-withdrawing group of isocyanate (–NCO) at the end of the polymer chain to eliminate the end hydroxy (–OH), which can enhance the interfacial compatibility and antioxidative decomposition capacity for PEs. The terminally functionalized poly (1,6-hexanediol) carbonate diols polymer electrolytes (TFPCDL) deliver good electrochemical stability, wide electrochemical stability window (4.7 V), and high ionic conductivity (3.75 × 10<sup>−4</sup> S cm<sup>−1</sup> at 25°C). Batteries employing TFPCDL demonstrated stable cycling performance with 88% capacity retention after 100 cycles when charged to 4.5 V. This work not only highlights a promising strategy for designing antioxidative PEs but also accelerates the practical application of SSLMBs with advanced cathode materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"175 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terminally functionalized polymer electrolytes with enhanced interfacial compatibility for robust solid-state lithium metal batteries\",\"authors\":\"Zhiyuan Lin, Yunhang Li, Wenbin Zhang, Guanghua Guo, Weihan Chen, Li Zhang, Shanran Yang, Yonggao Xia, Guofa Cai\",\"doi\":\"10.1016/j.jmst.2025.04.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state lithium metal batteries (SSLMBs) with high-voltage cathodes offer significant potential for next-generation energy storage but face challenges related to poor oxidative stability and interfacial incompatibility of polymer electrolytes (PEs). Herein, terminally functionalized polymer electrolytes (TFPEs) with chain polymer backbones were designed to enhance the antioxidation resistance and interfacial compatibility. Introduced the electron-withdrawing group of isocyanate (–NCO) at the end of the polymer chain to eliminate the end hydroxy (–OH), which can enhance the interfacial compatibility and antioxidative decomposition capacity for PEs. The terminally functionalized poly (1,6-hexanediol) carbonate diols polymer electrolytes (TFPCDL) deliver good electrochemical stability, wide electrochemical stability window (4.7 V), and high ionic conductivity (3.75 × 10<sup>−4</sup> S cm<sup>−1</sup> at 25°C). Batteries employing TFPCDL demonstrated stable cycling performance with 88% capacity retention after 100 cycles when charged to 4.5 V. This work not only highlights a promising strategy for designing antioxidative PEs but also accelerates the practical application of SSLMBs with advanced cathode materials.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.04.075\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.04.075","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有高压阴极的固态锂金属电池(sslmb)为下一代储能技术提供了巨大的潜力,但面临着氧化稳定性差和聚合物电解质(PEs)界面不相容的挑战。本文设计了具有链聚合物骨架的末端功能化聚合物电解质(TFPEs),以增强其抗氧化性和界面相容性。在聚合物链末端引入吸电子基团异氰酸酯(-NCO),消除了末端羟基(-OH),增强了PEs的界面相容性和抗氧化分解能力。末端功能化聚(1,6-己二醇)碳酸二醇聚合物电解质(TFPCDL)具有良好的电化学稳定性,宽电化学稳定窗口(4.7 V)和高离子电导率(3.75 × 10−4 S cm−1,25°C)。采用TFPCDL的电池在充电至4.5 V时,循环100次后的容量保持率为88%,表现出稳定的循环性能。这项工作不仅为设计抗氧化聚乙烯提供了一种有前途的策略,而且加速了先进阴极材料sslmb的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Terminally functionalized polymer electrolytes with enhanced interfacial compatibility for robust solid-state lithium metal batteries

Terminally functionalized polymer electrolytes with enhanced interfacial compatibility for robust solid-state lithium metal batteries
Solid-state lithium metal batteries (SSLMBs) with high-voltage cathodes offer significant potential for next-generation energy storage but face challenges related to poor oxidative stability and interfacial incompatibility of polymer electrolytes (PEs). Herein, terminally functionalized polymer electrolytes (TFPEs) with chain polymer backbones were designed to enhance the antioxidation resistance and interfacial compatibility. Introduced the electron-withdrawing group of isocyanate (–NCO) at the end of the polymer chain to eliminate the end hydroxy (–OH), which can enhance the interfacial compatibility and antioxidative decomposition capacity for PEs. The terminally functionalized poly (1,6-hexanediol) carbonate diols polymer electrolytes (TFPCDL) deliver good electrochemical stability, wide electrochemical stability window (4.7 V), and high ionic conductivity (3.75 × 10−4 S cm−1 at 25°C). Batteries employing TFPCDL demonstrated stable cycling performance with 88% capacity retention after 100 cycles when charged to 4.5 V. This work not only highlights a promising strategy for designing antioxidative PEs but also accelerates the practical application of SSLMBs with advanced cathode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信