BoneDat,用于计算机分析的标准化骨形态数据库。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Petr Henyš, Michal Kuchař
{"title":"BoneDat,用于计算机分析的标准化骨形态数据库。","authors":"Petr Henyš, Michal Kuchař","doi":"10.1038/s41597-025-05161-y","DOIUrl":null,"url":null,"abstract":"<p><p>In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1043"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181331/pdf/","citationCount":"0","resultStr":"{\"title\":\"BoneDat, a database of standardized bone morphology for in silico analyses.\",\"authors\":\"Petr Henyš, Michal Kuchař\",\"doi\":\"10.1038/s41597-025-05161-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"1043\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05161-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05161-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

计算机分析是理解骨科和进化生物学中骨结构-功能关系的关键,但由于缺乏标准化、高质量的人骨形态学数据集,其潜力受到限制。这种缺失阻碍了研究的可重复性和可靠计算模型的发展。为了克服这个问题,BoneDat被开发出来。这是一个综合数据库,包含278个临床腰盆腔CT扫描(骨盆和下脊柱)的标准化骨形态学数据。该数据集包括16岁至91岁的个人,按性别在10个年龄组中平衡。BoneDat提供精心设计的分割掩模、规范化的骨骼几何(体积网格)和按性别和年龄组织的参考形态学模板。通过提供标准化的参考几何和实现形状规范化,BoneDat提高了计算模型的可重复性和可信度。它还允许集成其他开放数据集,支持深度学习模型的训练和基准测试,并加速其临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

BoneDat, a database of standardized bone morphology for in silico analyses.

BoneDat, a database of standardized bone morphology for in silico analyses.

BoneDat, a database of standardized bone morphology for in silico analyses.

BoneDat, a database of standardized bone morphology for in silico analyses.

In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信