{"title":"BoneDat,用于计算机分析的标准化骨形态数据库。","authors":"Petr Henyš, Michal Kuchař","doi":"10.1038/s41597-025-05161-y","DOIUrl":null,"url":null,"abstract":"<p><p>In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1043"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181331/pdf/","citationCount":"0","resultStr":"{\"title\":\"BoneDat, a database of standardized bone morphology for in silico analyses.\",\"authors\":\"Petr Henyš, Michal Kuchař\",\"doi\":\"10.1038/s41597-025-05161-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"1043\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05161-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05161-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
BoneDat, a database of standardized bone morphology for in silico analyses.
In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.