{"title":"非靶向代谢组学揭示了木犀草素和运动联合治疗AD小鼠认知障碍的机制,通过调节自噬。","authors":"Xue Tao , Liguo Wang , Weijun Gong","doi":"10.1016/j.jnutbio.2025.110011","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) yields a dramatic burden on patients and their families, with no complete cure yet. Our group has previously found that AD-related cognitive impairment (ARCI) could be alleviated after luteolin and exercise combination treatment (Lut + Exe), but the potential mechanisms require further exploration. This work used untargeted metabolomics to uncover the mechanisms Lut + Exe protects against ARCI. Utilizing an Aβ<sub>1-42</sub>-oligomers-induced AD model, the Morris water maze (MWM) test was performed. Metabolomics of plasma was performed to identify differential metabolites. KEGG and MetaboAnalyst were used to enrich the metabolic pathways. Then, the autophagy inhibitor chloroquine (CQ) was utilized to verify the potential role of autophagy in the Lut+ Exe efficacy against ARCI. The results showed that Lut + Exe alleviated the ARCI in mice. The in-depth analysis showed that Lut + Exe could significantly affect purine metabolism, retinol metabolism, thiamine metabolism, histidine metabolism, and cysteine and methionine metabolism, indicating that the energy metabolism disorder was alleviated. Based on the close relationship between autophagy and energy metabolism, further study found that Lut + Exe could reverse the significant reduction of key autophagy proteins of AD model mice, while the effects of it on the MWM performance and neurogenesis of AD model mice could be blocked by CQ. This study reveals the crucial role of autophagy in the mechanisms of Lut + Exe against ARCI using untargeted metabolomics. Our work provides a novel paradigm to promote the use of combination treatment in curing AD.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"145 ","pages":"Article 110011"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Untargeted metabolomics reveals the mechanisms of luteolin and exercise combination treatment against cognitive impairments in AD mice through modulating autophagy\",\"authors\":\"Xue Tao , Liguo Wang , Weijun Gong\",\"doi\":\"10.1016/j.jnutbio.2025.110011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alzheimer's disease (AD) yields a dramatic burden on patients and their families, with no complete cure yet. Our group has previously found that AD-related cognitive impairment (ARCI) could be alleviated after luteolin and exercise combination treatment (Lut + Exe), but the potential mechanisms require further exploration. This work used untargeted metabolomics to uncover the mechanisms Lut + Exe protects against ARCI. Utilizing an Aβ<sub>1-42</sub>-oligomers-induced AD model, the Morris water maze (MWM) test was performed. Metabolomics of plasma was performed to identify differential metabolites. KEGG and MetaboAnalyst were used to enrich the metabolic pathways. Then, the autophagy inhibitor chloroquine (CQ) was utilized to verify the potential role of autophagy in the Lut+ Exe efficacy against ARCI. The results showed that Lut + Exe alleviated the ARCI in mice. The in-depth analysis showed that Lut + Exe could significantly affect purine metabolism, retinol metabolism, thiamine metabolism, histidine metabolism, and cysteine and methionine metabolism, indicating that the energy metabolism disorder was alleviated. Based on the close relationship between autophagy and energy metabolism, further study found that Lut + Exe could reverse the significant reduction of key autophagy proteins of AD model mice, while the effects of it on the MWM performance and neurogenesis of AD model mice could be blocked by CQ. This study reveals the crucial role of autophagy in the mechanisms of Lut + Exe against ARCI using untargeted metabolomics. Our work provides a novel paradigm to promote the use of combination treatment in curing AD.</div></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"145 \",\"pages\":\"Article 110011\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286325001743\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286325001743","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Untargeted metabolomics reveals the mechanisms of luteolin and exercise combination treatment against cognitive impairments in AD mice through modulating autophagy
Alzheimer's disease (AD) yields a dramatic burden on patients and their families, with no complete cure yet. Our group has previously found that AD-related cognitive impairment (ARCI) could be alleviated after luteolin and exercise combination treatment (Lut + Exe), but the potential mechanisms require further exploration. This work used untargeted metabolomics to uncover the mechanisms Lut + Exe protects against ARCI. Utilizing an Aβ1-42-oligomers-induced AD model, the Morris water maze (MWM) test was performed. Metabolomics of plasma was performed to identify differential metabolites. KEGG and MetaboAnalyst were used to enrich the metabolic pathways. Then, the autophagy inhibitor chloroquine (CQ) was utilized to verify the potential role of autophagy in the Lut+ Exe efficacy against ARCI. The results showed that Lut + Exe alleviated the ARCI in mice. The in-depth analysis showed that Lut + Exe could significantly affect purine metabolism, retinol metabolism, thiamine metabolism, histidine metabolism, and cysteine and methionine metabolism, indicating that the energy metabolism disorder was alleviated. Based on the close relationship between autophagy and energy metabolism, further study found that Lut + Exe could reverse the significant reduction of key autophagy proteins of AD model mice, while the effects of it on the MWM performance and neurogenesis of AD model mice could be blocked by CQ. This study reveals the crucial role of autophagy in the mechanisms of Lut + Exe against ARCI using untargeted metabolomics. Our work provides a novel paradigm to promote the use of combination treatment in curing AD.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.