Tzu Cheng Chao, Dinghui Wang, James G Pipe, Tim Leiner
{"title":"高效的同时脂肪和水的心脏成像螺旋MRI。","authors":"Tzu Cheng Chao, Dinghui Wang, James G Pipe, Tim Leiner","doi":"10.1016/j.jocmr.2025.101926","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiac cine imaging is routinely used in patient with suspected or known cardiac dysfunction. Water and fat (W/F) separated cardiovascular magnetic resonance (CMR) will be helpful to distinguish adipose tissue, blood and myocardium. Inclusion of a multi-echo acquisition in the conventional balanced steady-state free precession (bSSFP) cine sequence can introduce artifacts and reduce temporal resolution. Spiral MRI is known for its signal-to-noise ratio (SNR) efficiency and has the potential to improve temporal efficiency for W/F separated cine imaging. The present work implements a spoiled gradient echo sequence (SPGR) with spiral trajectory to obtain W/F separated cine images simultaneously.</p><p><strong>Methods: </strong>Three different sequences were performed for comparison, a Cartesian 2-TE bSSFP sequence, a Cartesian 3-TE bSSFP sequence, and the proposed spiral SPGR sequence. Five volunteers were recruited for the scans on a 1.5T scanner with spatial resolution 1.7×1.7×8.0mm<sup>3</sup> over a 400×400mm<sup>2</sup> FOV. In addition to qualitative comparisons, a quantitative measurement is performed in terms of the contrast to noise ratio (CNR).</p><p><strong>Results: </strong>The proposed method to obtain W/F separated cine images provides better temporal efficiency and fewer artifacts compared to conventional Cartesian bSSFP sequences. The 2-TE bSSFP features the highest artifact level including susceptibility artifacts and fat/water swaps. The proposed method reduces scan time by approximately 50% with similar spatial and temporal resolution with lower specific absorption rate (SAR). The contrast between the blood pool and myocardium is higher when using the spiral readout (p≤0.05). The results suggest that the presented sequence has potential to facilitate simultaneous imaging for water and fat components in a cine scan while shortening exam time and lowering SAR.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101926"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-efficient simultaneous fat and water cardiac cine imaging using spiral MRI.\",\"authors\":\"Tzu Cheng Chao, Dinghui Wang, James G Pipe, Tim Leiner\",\"doi\":\"10.1016/j.jocmr.2025.101926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiac cine imaging is routinely used in patient with suspected or known cardiac dysfunction. Water and fat (W/F) separated cardiovascular magnetic resonance (CMR) will be helpful to distinguish adipose tissue, blood and myocardium. Inclusion of a multi-echo acquisition in the conventional balanced steady-state free precession (bSSFP) cine sequence can introduce artifacts and reduce temporal resolution. Spiral MRI is known for its signal-to-noise ratio (SNR) efficiency and has the potential to improve temporal efficiency for W/F separated cine imaging. The present work implements a spoiled gradient echo sequence (SPGR) with spiral trajectory to obtain W/F separated cine images simultaneously.</p><p><strong>Methods: </strong>Three different sequences were performed for comparison, a Cartesian 2-TE bSSFP sequence, a Cartesian 3-TE bSSFP sequence, and the proposed spiral SPGR sequence. Five volunteers were recruited for the scans on a 1.5T scanner with spatial resolution 1.7×1.7×8.0mm<sup>3</sup> over a 400×400mm<sup>2</sup> FOV. In addition to qualitative comparisons, a quantitative measurement is performed in terms of the contrast to noise ratio (CNR).</p><p><strong>Results: </strong>The proposed method to obtain W/F separated cine images provides better temporal efficiency and fewer artifacts compared to conventional Cartesian bSSFP sequences. The 2-TE bSSFP features the highest artifact level including susceptibility artifacts and fat/water swaps. The proposed method reduces scan time by approximately 50% with similar spatial and temporal resolution with lower specific absorption rate (SAR). The contrast between the blood pool and myocardium is higher when using the spiral readout (p≤0.05). The results suggest that the presented sequence has potential to facilitate simultaneous imaging for water and fat components in a cine scan while shortening exam time and lowering SAR.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101926\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2025.101926\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2025.101926","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Time-efficient simultaneous fat and water cardiac cine imaging using spiral MRI.
Background: Cardiac cine imaging is routinely used in patient with suspected or known cardiac dysfunction. Water and fat (W/F) separated cardiovascular magnetic resonance (CMR) will be helpful to distinguish adipose tissue, blood and myocardium. Inclusion of a multi-echo acquisition in the conventional balanced steady-state free precession (bSSFP) cine sequence can introduce artifacts and reduce temporal resolution. Spiral MRI is known for its signal-to-noise ratio (SNR) efficiency and has the potential to improve temporal efficiency for W/F separated cine imaging. The present work implements a spoiled gradient echo sequence (SPGR) with spiral trajectory to obtain W/F separated cine images simultaneously.
Methods: Three different sequences were performed for comparison, a Cartesian 2-TE bSSFP sequence, a Cartesian 3-TE bSSFP sequence, and the proposed spiral SPGR sequence. Five volunteers were recruited for the scans on a 1.5T scanner with spatial resolution 1.7×1.7×8.0mm3 over a 400×400mm2 FOV. In addition to qualitative comparisons, a quantitative measurement is performed in terms of the contrast to noise ratio (CNR).
Results: The proposed method to obtain W/F separated cine images provides better temporal efficiency and fewer artifacts compared to conventional Cartesian bSSFP sequences. The 2-TE bSSFP features the highest artifact level including susceptibility artifacts and fat/water swaps. The proposed method reduces scan time by approximately 50% with similar spatial and temporal resolution with lower specific absorption rate (SAR). The contrast between the blood pool and myocardium is higher when using the spiral readout (p≤0.05). The results suggest that the presented sequence has potential to facilitate simultaneous imaging for water and fat components in a cine scan while shortening exam time and lowering SAR.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.