促进茉莉花园土壤固碳:秸秆和生物炭对矿物相关碳和颗粒有机碳的差异效应

IF 8.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Journal of Environmental Management Pub Date : 2025-08-01 Epub Date: 2025-06-19 DOI:10.1016/j.jenvman.2025.126282
Xiaoying Ren, Wenwen Yang, Liping Ye, Siyan Lin, Yuan Li, Weiqi Wang, Jordi Sardans, Junma Chen, Shiyu Chen, Siqi Yu, Li Hou, Akash Tariq, Josep Peñuelas
{"title":"促进茉莉花园土壤固碳:秸秆和生物炭对矿物相关碳和颗粒有机碳的差异效应","authors":"Xiaoying Ren, Wenwen Yang, Liping Ye, Siyan Lin, Yuan Li, Weiqi Wang, Jordi Sardans, Junma Chen, Shiyu Chen, Siqi Yu, Li Hou, Akash Tariq, Josep Peñuelas","doi":"10.1016/j.jenvman.2025.126282","DOIUrl":null,"url":null,"abstract":"<p><p>Reducing chemical fertilizer use while enhancing soil organic carbon (SOC) stability, through straw return and biochar amendment presents an integrated strategy for climate change mitigation and sustainable agriculture. However, the effectiveness of their carbon (C) sequestration potential and organic C pool stability is influenced by varing environmental conditions. This study investigated the effects of straw and biochar on C sequestration potential and SOC pool stability in jasmine garden soil in Fuzhou, China. Six treatments were compared: No Fertilizer (Control), Fertilizer (F) (NPK fertilizer), No Fertilizer + Straw (NF + S), Fertilizer + Straw (F + S), No Fertilizer + Biochar (NF + B), and Fertilizer + Biochar (F + B). Fertilizer (compound NPK 16:16:16) was applied at a total rate of 260 kg·ha-1, split into two applications of 130 kg·ha-1 each. Straw and biochar were both applied at a rate of 8000 kg·ha-1 each. We measured mineral-associated organic C (MAOC), particulate organic C (POC), their binding mechanisms, and key physicochemical properties. The results showed that, compared to the control, NF + B significantly increased MAOC (13.29 %; p < 0.05). Biochar application (F + B and NF + B) significantly increased POC (150.57 %-211.34 %) and calcium-bound organic C (Ca-SOC) (22.22 %-31.94 %; p < 0.05), with more pronounced effects in the absence of fertilizer. Both straw and biochar applications significantly improved soil pH (2.74 %-15.40 %) and decreased soil bulk density (BD) (10.08 %-26.36 %; p < 0.05), while straw significantly increased electrical conductivity (EC) (17.91 %-35.82 %; p < 0.05). Furthermore, both straw and biochar amendments significantly increased SOC (34.66 %-57.18 %), easily oxidizable organic C (EOC) (23.35 %-48.58 %), and dissolved organic C (DOC) (15.98 %-93.00 %; p < 0.05). Redundancy analysis (RDA) showed that pH (70.4 % variance explained) and SOC (7.5 % variance explained) were the dominant drivers of SOC pool stability. These findings suggest that biochar amendment, particularly without chemical fertilizers, represents a promising strategy for enhancing soil C sequestration and stability in jasmine gardens. This approach holds significant potential for sustainable agricultural practices and climate change mitigation in subtropical regions.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"389 ","pages":"126282"},"PeriodicalIF":8.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing soil carbon sequestration in jasmine gardens: Differential effects of straw and biochar on mineral-associated and particulate organic carbon.\",\"authors\":\"Xiaoying Ren, Wenwen Yang, Liping Ye, Siyan Lin, Yuan Li, Weiqi Wang, Jordi Sardans, Junma Chen, Shiyu Chen, Siqi Yu, Li Hou, Akash Tariq, Josep Peñuelas\",\"doi\":\"10.1016/j.jenvman.2025.126282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reducing chemical fertilizer use while enhancing soil organic carbon (SOC) stability, through straw return and biochar amendment presents an integrated strategy for climate change mitigation and sustainable agriculture. However, the effectiveness of their carbon (C) sequestration potential and organic C pool stability is influenced by varing environmental conditions. This study investigated the effects of straw and biochar on C sequestration potential and SOC pool stability in jasmine garden soil in Fuzhou, China. Six treatments were compared: No Fertilizer (Control), Fertilizer (F) (NPK fertilizer), No Fertilizer + Straw (NF + S), Fertilizer + Straw (F + S), No Fertilizer + Biochar (NF + B), and Fertilizer + Biochar (F + B). Fertilizer (compound NPK 16:16:16) was applied at a total rate of 260 kg·ha-1, split into two applications of 130 kg·ha-1 each. Straw and biochar were both applied at a rate of 8000 kg·ha-1 each. We measured mineral-associated organic C (MAOC), particulate organic C (POC), their binding mechanisms, and key physicochemical properties. The results showed that, compared to the control, NF + B significantly increased MAOC (13.29 %; p < 0.05). Biochar application (F + B and NF + B) significantly increased POC (150.57 %-211.34 %) and calcium-bound organic C (Ca-SOC) (22.22 %-31.94 %; p < 0.05), with more pronounced effects in the absence of fertilizer. Both straw and biochar applications significantly improved soil pH (2.74 %-15.40 %) and decreased soil bulk density (BD) (10.08 %-26.36 %; p < 0.05), while straw significantly increased electrical conductivity (EC) (17.91 %-35.82 %; p < 0.05). Furthermore, both straw and biochar amendments significantly increased SOC (34.66 %-57.18 %), easily oxidizable organic C (EOC) (23.35 %-48.58 %), and dissolved organic C (DOC) (15.98 %-93.00 %; p < 0.05). Redundancy analysis (RDA) showed that pH (70.4 % variance explained) and SOC (7.5 % variance explained) were the dominant drivers of SOC pool stability. These findings suggest that biochar amendment, particularly without chemical fertilizers, represents a promising strategy for enhancing soil C sequestration and stability in jasmine gardens. This approach holds significant potential for sustainable agricultural practices and climate change mitigation in subtropical regions.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"389 \",\"pages\":\"126282\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2025.126282\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.126282","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过秸秆还田和生物炭改良,在减少化肥使用的同时提高土壤有机碳(SOC)稳定性,是减缓气候变化和可持续农业的综合战略。然而,它们的碳(C)固存潜力和有机C库稳定性的有效性受到不同环境条件的影响。研究了秸秆和生物炭对福州茉莉花花园土壤碳固存潜力和有机碳库稳定性的影响。对照不施肥、不施肥(F) (NPK肥)、不施肥+秸秆(NF + S)、不施肥+秸秆(F + S)、不施肥+生物炭(NF + B)、不施肥+生物炭(F + B) 6种处理进行比较。复合氮磷钾(NPK) 16:16:16,总施用量260 kg·ha-1,分两次施用,每次施用130 kg·ha-1。秸秆和生物炭的施用量均为8000 kg·ha-1。我们测量了矿物相关有机C (MAOC),颗粒有机C (POC),它们的结合机制和关键的物理化学性质。结果表明,与对照组相比,NF + B显著提高了MAOC (13.29%;p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing soil carbon sequestration in jasmine gardens: Differential effects of straw and biochar on mineral-associated and particulate organic carbon.

Reducing chemical fertilizer use while enhancing soil organic carbon (SOC) stability, through straw return and biochar amendment presents an integrated strategy for climate change mitigation and sustainable agriculture. However, the effectiveness of their carbon (C) sequestration potential and organic C pool stability is influenced by varing environmental conditions. This study investigated the effects of straw and biochar on C sequestration potential and SOC pool stability in jasmine garden soil in Fuzhou, China. Six treatments were compared: No Fertilizer (Control), Fertilizer (F) (NPK fertilizer), No Fertilizer + Straw (NF + S), Fertilizer + Straw (F + S), No Fertilizer + Biochar (NF + B), and Fertilizer + Biochar (F + B). Fertilizer (compound NPK 16:16:16) was applied at a total rate of 260 kg·ha-1, split into two applications of 130 kg·ha-1 each. Straw and biochar were both applied at a rate of 8000 kg·ha-1 each. We measured mineral-associated organic C (MAOC), particulate organic C (POC), their binding mechanisms, and key physicochemical properties. The results showed that, compared to the control, NF + B significantly increased MAOC (13.29 %; p < 0.05). Biochar application (F + B and NF + B) significantly increased POC (150.57 %-211.34 %) and calcium-bound organic C (Ca-SOC) (22.22 %-31.94 %; p < 0.05), with more pronounced effects in the absence of fertilizer. Both straw and biochar applications significantly improved soil pH (2.74 %-15.40 %) and decreased soil bulk density (BD) (10.08 %-26.36 %; p < 0.05), while straw significantly increased electrical conductivity (EC) (17.91 %-35.82 %; p < 0.05). Furthermore, both straw and biochar amendments significantly increased SOC (34.66 %-57.18 %), easily oxidizable organic C (EOC) (23.35 %-48.58 %), and dissolved organic C (DOC) (15.98 %-93.00 %; p < 0.05). Redundancy analysis (RDA) showed that pH (70.4 % variance explained) and SOC (7.5 % variance explained) were the dominant drivers of SOC pool stability. These findings suggest that biochar amendment, particularly without chemical fertilizers, represents a promising strategy for enhancing soil C sequestration and stability in jasmine gardens. This approach holds significant potential for sustainable agricultural practices and climate change mitigation in subtropical regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信