{"title":"基于机器学习的棱镜张拉整体结构机械臂逆运动学可扩展性","authors":"Aidar Shakerimov , Medetkhan Altymbek , Koichi Koganezawa , Azamat Yeshmukhametov","doi":"10.1016/j.robot.2025.105102","DOIUrl":null,"url":null,"abstract":"<div><div>Tensegrity structures are gaining attention due to their distinctive features that stem from wire-driven mechanisms and their highly redundant nature. These features include a lightweight framework, improved resistance to impacts, and ability to carry high payloads. Nonetheless, controlling these structures and understanding their movement remain complex challenges. Our research introduces a pioneering control strategy that utilizes some machine learning algorithms (linear regression, ridge regression, and neural network feedforward) to achieve inverse kinematics for prismatic tensegrity manipulators. This approach has been experimentally validated on two different structures, one with a triangular and the other with a quadrangular configuration, each forming a dual-layer setup. Our experimental results indicate that each of the presented algorithms facilitates the approximate inverse kinematics required for the control of the manipulators with average precision error of 2 cm.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"193 ","pages":"Article 105102"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based inverse kinematics scalability for prismatic tensegrity structural manipulators\",\"authors\":\"Aidar Shakerimov , Medetkhan Altymbek , Koichi Koganezawa , Azamat Yeshmukhametov\",\"doi\":\"10.1016/j.robot.2025.105102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tensegrity structures are gaining attention due to their distinctive features that stem from wire-driven mechanisms and their highly redundant nature. These features include a lightweight framework, improved resistance to impacts, and ability to carry high payloads. Nonetheless, controlling these structures and understanding their movement remain complex challenges. Our research introduces a pioneering control strategy that utilizes some machine learning algorithms (linear regression, ridge regression, and neural network feedforward) to achieve inverse kinematics for prismatic tensegrity manipulators. This approach has been experimentally validated on two different structures, one with a triangular and the other with a quadrangular configuration, each forming a dual-layer setup. Our experimental results indicate that each of the presented algorithms facilitates the approximate inverse kinematics required for the control of the manipulators with average precision error of 2 cm.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"193 \",\"pages\":\"Article 105102\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092188902500199X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092188902500199X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Machine learning-based inverse kinematics scalability for prismatic tensegrity structural manipulators
Tensegrity structures are gaining attention due to their distinctive features that stem from wire-driven mechanisms and their highly redundant nature. These features include a lightweight framework, improved resistance to impacts, and ability to carry high payloads. Nonetheless, controlling these structures and understanding their movement remain complex challenges. Our research introduces a pioneering control strategy that utilizes some machine learning algorithms (linear regression, ridge regression, and neural network feedforward) to achieve inverse kinematics for prismatic tensegrity manipulators. This approach has been experimentally validated on two different structures, one with a triangular and the other with a quadrangular configuration, each forming a dual-layer setup. Our experimental results indicate that each of the presented algorithms facilitates the approximate inverse kinematics required for the control of the manipulators with average precision error of 2 cm.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.