无界域上分布依赖的非自治随机FitzHugh-Nagumo系统的回拉度量吸引子

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Ruiyan Hu, Dingshi Li, Tianhao Zeng
{"title":"无界域上分布依赖的非自治随机FitzHugh-Nagumo系统的回拉度量吸引子","authors":"Ruiyan Hu,&nbsp;Dingshi Li,&nbsp;Tianhao Zeng","doi":"10.1016/j.cnsns.2025.109047","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is primarily focused on the asymptotic dynamics of a non-autonomous stochastic FitzHugh–Nagumo system with distribution dependence, specifically on unbounded domains <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Initially, we establish the well-posedness of solutions for the FitzHugh–Nagumo system with distribution dependence by utilizing the Banach fixed-point theorem. Subsequently, we demonstrate the existence and uniqueness of pullback measure attractors for this system through the application of splitting techniques, tail-end estimates and Vitali’s theorem.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"151 ","pages":"Article 109047"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullback measure attractors for non-autonomous stochastic FitzHugh–Nagumo system with distribution dependence on unbounded domains\",\"authors\":\"Ruiyan Hu,&nbsp;Dingshi Li,&nbsp;Tianhao Zeng\",\"doi\":\"10.1016/j.cnsns.2025.109047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is primarily focused on the asymptotic dynamics of a non-autonomous stochastic FitzHugh–Nagumo system with distribution dependence, specifically on unbounded domains <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Initially, we establish the well-posedness of solutions for the FitzHugh–Nagumo system with distribution dependence by utilizing the Banach fixed-point theorem. Subsequently, we demonstrate the existence and uniqueness of pullback measure attractors for this system through the application of splitting techniques, tail-end estimates and Vitali’s theorem.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"151 \",\"pages\":\"Article 109047\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425004587\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425004587","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究具有分布依赖的非自治随机FitzHugh-Nagumo系统的渐近动力学问题,特别是在无界域Rn上。首先利用Banach不动点定理,建立了具有分布依赖性的FitzHugh-Nagumo系统解的适定性。随后,我们利用分裂技术、尾端估计和Vitali定理证明了该系统的回拉测度吸引子的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pullback measure attractors for non-autonomous stochastic FitzHugh–Nagumo system with distribution dependence on unbounded domains
This paper is primarily focused on the asymptotic dynamics of a non-autonomous stochastic FitzHugh–Nagumo system with distribution dependence, specifically on unbounded domains Rn. Initially, we establish the well-posedness of solutions for the FitzHugh–Nagumo system with distribution dependence by utilizing the Banach fixed-point theorem. Subsequently, we demonstrate the existence and uniqueness of pullback measure attractors for this system through the application of splitting techniques, tail-end estimates and Vitali’s theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信