升级生物炭负载FeAl2O4催化剂促进聚丙烯原位快速热解制氢

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sijie Li, Yiting Wu, Ayyaz Mahmood, Jin Liu, Ziqi Xu, Kaiyang Lu, Moshe Sheintuch and Xi Gao*, 
{"title":"升级生物炭负载FeAl2O4催化剂促进聚丙烯原位快速热解制氢","authors":"Sijie Li,&nbsp;Yiting Wu,&nbsp;Ayyaz Mahmood,&nbsp;Jin Liu,&nbsp;Ziqi Xu,&nbsp;Kaiyang Lu,&nbsp;Moshe Sheintuch and Xi Gao*,&nbsp;","doi":"10.1021/acssuschemeng.5c02097","DOIUrl":null,"url":null,"abstract":"<p >The coupling of fast pyrolysis with green catalysis offers a sustainable approach for transforming waste polypropylene (PP) plastic into valuable hydrogen and carbon materials. The intrinsic catalytic activities of biochar, Al<sub>2</sub>O<sub>3</sub>@biochar, Fe<sub>3</sub>O<sub>4</sub>@biochar, Fe<sub>2</sub>AlO<sub>4</sub>@biochar, and FeAl<sub>2</sub>O<sub>4</sub>@biochar are explored for upgrading the fast pyrolysis vapors of PP powder. The FeAl<sub>2</sub>O<sub>4</sub>@biochar catalyst with tetrahedral iron sites achieves an excellent hydrogen yield, equivalent to 86.25 H% in PP. The hydrogen yield from converting practical PP mask waste reaches 57.98 ± 1.96 mmol g<sub>plastic</sub><sup>–1</sup>, more than 673.61 ± 7.00 mmol g<sub>Fe</sub><sup>–1</sup>. The density functional theory (DFT) calculation indicates that a closer d-band center of FeAl<sub>2</sub>O<sub>4</sub> is more favorable for C–H bond activation and that dehydrogenation of propylene as a model compound is the primary source of hydrogen production, more readily than C–C bond cleavage, and efficiently generates H<sub>2</sub>.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 27","pages":"10453–10466"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Hydrogen Production via Ex Situ Catalytic Fast Pyrolysis of Polypropylene with Upcycled Biochar-Supported FeAl2O4 Catalyst\",\"authors\":\"Sijie Li,&nbsp;Yiting Wu,&nbsp;Ayyaz Mahmood,&nbsp;Jin Liu,&nbsp;Ziqi Xu,&nbsp;Kaiyang Lu,&nbsp;Moshe Sheintuch and Xi Gao*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c02097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The coupling of fast pyrolysis with green catalysis offers a sustainable approach for transforming waste polypropylene (PP) plastic into valuable hydrogen and carbon materials. The intrinsic catalytic activities of biochar, Al<sub>2</sub>O<sub>3</sub>@biochar, Fe<sub>3</sub>O<sub>4</sub>@biochar, Fe<sub>2</sub>AlO<sub>4</sub>@biochar, and FeAl<sub>2</sub>O<sub>4</sub>@biochar are explored for upgrading the fast pyrolysis vapors of PP powder. The FeAl<sub>2</sub>O<sub>4</sub>@biochar catalyst with tetrahedral iron sites achieves an excellent hydrogen yield, equivalent to 86.25 H% in PP. The hydrogen yield from converting practical PP mask waste reaches 57.98 ± 1.96 mmol g<sub>plastic</sub><sup>–1</sup>, more than 673.61 ± 7.00 mmol g<sub>Fe</sub><sup>–1</sup>. The density functional theory (DFT) calculation indicates that a closer d-band center of FeAl<sub>2</sub>O<sub>4</sub> is more favorable for C–H bond activation and that dehydrogenation of propylene as a model compound is the primary source of hydrogen production, more readily than C–C bond cleavage, and efficiently generates H<sub>2</sub>.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 27\",\"pages\":\"10453–10466\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c02097\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c02097","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

快速热解与绿色催化的耦合为将废旧聚丙烯(PP)塑料转化为有价值的氢碳材料提供了一条可持续发展的途径。考察了生物炭Al2O3@biochar、Fe3O4@biochar、Fe2AlO4@biochar和FeAl2O4@biochar对PP粉体快速热解蒸汽的内在催化活性。具有四面体铁位的FeAl2O4@biochar催化剂的产氢率达到了86.25 H%,实际PP掩膜废弃物的产氢率达到了57.98±1.96 mmol gFe-1,大于673.61±7.00 mmol gFe-1。密度泛函理论(DFT)计算表明,FeAl2O4的d波段中心越近,越有利于C-H键的活化,丙烯脱氢是模型化合物产氢的主要来源,比C-C键的裂解更容易,并能有效地生成H2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Hydrogen Production via Ex Situ Catalytic Fast Pyrolysis of Polypropylene with Upcycled Biochar-Supported FeAl2O4 Catalyst

Enhancing Hydrogen Production via Ex Situ Catalytic Fast Pyrolysis of Polypropylene with Upcycled Biochar-Supported FeAl2O4 Catalyst

Enhancing Hydrogen Production via Ex Situ Catalytic Fast Pyrolysis of Polypropylene with Upcycled Biochar-Supported FeAl2O4 Catalyst

The coupling of fast pyrolysis with green catalysis offers a sustainable approach for transforming waste polypropylene (PP) plastic into valuable hydrogen and carbon materials. The intrinsic catalytic activities of biochar, Al2O3@biochar, Fe3O4@biochar, Fe2AlO4@biochar, and FeAl2O4@biochar are explored for upgrading the fast pyrolysis vapors of PP powder. The FeAl2O4@biochar catalyst with tetrahedral iron sites achieves an excellent hydrogen yield, equivalent to 86.25 H% in PP. The hydrogen yield from converting practical PP mask waste reaches 57.98 ± 1.96 mmol gplastic–1, more than 673.61 ± 7.00 mmol gFe–1. The density functional theory (DFT) calculation indicates that a closer d-band center of FeAl2O4 is more favorable for C–H bond activation and that dehydrogenation of propylene as a model compound is the primary source of hydrogen production, more readily than C–C bond cleavage, and efficiently generates H2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信