将多模态人工智能应用于生理波形可以改善心血管特征的遗传预测

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Yuchen Zhou, Justin Khasentino, Taedong Yun, Mahantesh I. Biradar, Jacqueline Shreibati, Dongbing Lai, Tae-Hwi Schwantes-An, Robert Luben, Zachary R. McCaw, Jorgen Engmann, Rui Providencia, Amand Floriaan Schmidt, Patricia B. Munroe, Howard Yang, Andrew Carroll, Anthony P. Khawaja, Cory Y. McLean, Babak Behsaz, Farhad Hormozdiari
{"title":"将多模态人工智能应用于生理波形可以改善心血管特征的遗传预测","authors":"Yuchen Zhou, Justin Khasentino, Taedong Yun, Mahantesh I. Biradar, Jacqueline Shreibati, Dongbing Lai, Tae-Hwi Schwantes-An, Robert Luben, Zachary R. McCaw, Jorgen Engmann, Rui Providencia, Amand Floriaan Schmidt, Patricia B. Munroe, Howard Yang, Andrew Carroll, Anthony P. Khawaja, Cory Y. McLean, Babak Behsaz, Farhad Hormozdiari","doi":"10.1016/j.ajhg.2025.05.015","DOIUrl":null,"url":null,"abstract":"Electronic health records, biobanks, and wearable biosensors enable the collection of multiple health modalities from many individuals. Access to multimodal health data provides a unique opportunity for genetic studies of complex traits because different modalities relevant to a single physiological system (e.g., circulatory system) encode complementary and overlapping information. We propose a multimodal deep learning method, multimodal representation learning for genetic discovery on low-dimensional embeddings (M-REGLE), for discovering genetic associations from a joint representation of complementary electrophysiological waveform modalities. M-REGLE jointly learns a lower representation (i.e., latent factors) of multimodal physiological waveforms using a convolutional variational autoencoder, performs genome-wide association studies (GWASs) on each latent factor, then combines the results to study the genetics of the underlying system. To validate the advantages of M-REGLE and multimodal learning, we apply it to common cardiovascular modalities (photoplethysmogram [PPG] and electrocardiogram [ECG]) and compare its results to unimodal learning methods in which representations are learned from each data modality separately but are statistically combined for downstream genetic comparison. M-REGLE identifies 19.3% more loci on the 12-lead ECG dataset, 13.0% more loci on the ECG lead I + PPG dataset, and its genetic risk score significantly outperforms the unimodal risk score at predicting cardiac phenotypes, such as atrial fibrillation (Afib), in multiple biobanks.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"101 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying multimodal AI to physiological waveforms improves genetic prediction of cardiovascular traits\",\"authors\":\"Yuchen Zhou, Justin Khasentino, Taedong Yun, Mahantesh I. Biradar, Jacqueline Shreibati, Dongbing Lai, Tae-Hwi Schwantes-An, Robert Luben, Zachary R. McCaw, Jorgen Engmann, Rui Providencia, Amand Floriaan Schmidt, Patricia B. Munroe, Howard Yang, Andrew Carroll, Anthony P. Khawaja, Cory Y. McLean, Babak Behsaz, Farhad Hormozdiari\",\"doi\":\"10.1016/j.ajhg.2025.05.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic health records, biobanks, and wearable biosensors enable the collection of multiple health modalities from many individuals. Access to multimodal health data provides a unique opportunity for genetic studies of complex traits because different modalities relevant to a single physiological system (e.g., circulatory system) encode complementary and overlapping information. We propose a multimodal deep learning method, multimodal representation learning for genetic discovery on low-dimensional embeddings (M-REGLE), for discovering genetic associations from a joint representation of complementary electrophysiological waveform modalities. M-REGLE jointly learns a lower representation (i.e., latent factors) of multimodal physiological waveforms using a convolutional variational autoencoder, performs genome-wide association studies (GWASs) on each latent factor, then combines the results to study the genetics of the underlying system. To validate the advantages of M-REGLE and multimodal learning, we apply it to common cardiovascular modalities (photoplethysmogram [PPG] and electrocardiogram [ECG]) and compare its results to unimodal learning methods in which representations are learned from each data modality separately but are statistically combined for downstream genetic comparison. M-REGLE identifies 19.3% more loci on the 12-lead ECG dataset, 13.0% more loci on the ECG lead I + PPG dataset, and its genetic risk score significantly outperforms the unimodal risk score at predicting cardiac phenotypes, such as atrial fibrillation (Afib), in multiple biobanks.\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.05.015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.05.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录、生物银行和可穿戴生物传感器能够收集许多个人的多种健康模式。获取多模式健康数据为复杂性状的遗传研究提供了独特的机会,因为与单一生理系统(如循环系统)相关的不同模式编码了互补和重叠的信息。我们提出了一种多模态深度学习方法,即用于低维嵌入遗传发现的多模态表示学习(M-REGLE),用于从互补电生理波形模式的联合表示中发现遗传关联。M-REGLE使用卷积变分自编码器共同学习多模态生理波形的较低表示(即潜在因素),对每个潜在因素进行全基因组关联研究(GWASs),然后将结果结合起来研究潜在系统的遗传学。为了验证M-REGLE和多模态学习的优势,我们将其应用于常见的心血管模式(光体积描记图[PPG]和心电图[ECG]),并将其结果与单模态学习方法进行比较,单模态学习方法分别从每个数据模式中学习表征,但在下游遗传比较中进行统计组合。M-REGLE在12导联心电图数据集中多识别19.3%的基因座,在ECG导联I + PPG数据集中多识别13.0%的基因座,其遗传风险评分在多个生物库中预测心脏表型(如心房颤动(Afib))方面显著优于单峰风险评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying multimodal AI to physiological waveforms improves genetic prediction of cardiovascular traits
Electronic health records, biobanks, and wearable biosensors enable the collection of multiple health modalities from many individuals. Access to multimodal health data provides a unique opportunity for genetic studies of complex traits because different modalities relevant to a single physiological system (e.g., circulatory system) encode complementary and overlapping information. We propose a multimodal deep learning method, multimodal representation learning for genetic discovery on low-dimensional embeddings (M-REGLE), for discovering genetic associations from a joint representation of complementary electrophysiological waveform modalities. M-REGLE jointly learns a lower representation (i.e., latent factors) of multimodal physiological waveforms using a convolutional variational autoencoder, performs genome-wide association studies (GWASs) on each latent factor, then combines the results to study the genetics of the underlying system. To validate the advantages of M-REGLE and multimodal learning, we apply it to common cardiovascular modalities (photoplethysmogram [PPG] and electrocardiogram [ECG]) and compare its results to unimodal learning methods in which representations are learned from each data modality separately but are statistically combined for downstream genetic comparison. M-REGLE identifies 19.3% more loci on the 12-lead ECG dataset, 13.0% more loci on the ECG lead I + PPG dataset, and its genetic risk score significantly outperforms the unimodal risk score at predicting cardiac phenotypes, such as atrial fibrillation (Afib), in multiple biobanks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信