电纺丝铁钛氧化物纳米纤维增强锂存储性能的退火条件工程

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Lisha Zhang, Fei Xie, Shujin Hao, Feiyu Diao, Yiqian Wang
{"title":"电纺丝铁钛氧化物纳米纤维增强锂存储性能的退火条件工程","authors":"Lisha Zhang, Fei Xie, Shujin Hao, Feiyu Diao, Yiqian Wang","doi":"10.1016/j.electacta.2025.146746","DOIUrl":null,"url":null,"abstract":"Iron/titanium-based oxide compounds have garnered significant attention for their promising applications in lithium-ion batteries. To implement this, a large-scale fabrication technique such as electrospinning has become pivotal for the preparation of one-dimensional iron/titanium-based oxide nanocomposites. However, there exists a notable gap in understanding the influence of annealing conditions on the structure, morphology and electrochemical properties of resultant products. In this work, iron-titanium-based oxide nanofibers are produced <em>via</em> electrospinning followed by subsequent annealing, and the influence of annealing atmospheres on the products is systematically investigated. When annealed at 600°C in an argon atmosphere, the product is carbon nanofibers loaded with FeTiO<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> nanoparticles (FeTiO<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/CNFs), while annealing in air the product is carbon nanofibers embedded with Fe<sub>2</sub>TiO<sub>5</sub> nanoparticles (Fe<sub>2</sub>TiO<sub>5</sub>/CNFs). Electrochemical tests demonstrate that FeTiO<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/CNFs maintain a capacity of 395.6 mAh g<sup>-1</sup> after 100 cycles at a current density of 0.2 A g<sup>-1</sup>, which is higher than that of Fe<sub>2</sub>TiO<sub>5</sub>/CNFs (174 mAh g<sup>-1</sup>) and Fe<sub>3</sub>O<sub>4</sub>/CNFs (314 mAh g<sup>-1</sup>). Moreover, FeTiO<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/CNFs present a remarkable rate capability, possessing a capacity of 212.1 mAh g<sup>-1</sup> at 2.0 A g<sup>-1</sup>. This excellent performance is attributed to the synergistic effect between FeTiO<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> and buffering effect of the carbon fibers. These findings highlight the significant application potential of iron/titanium oxides in the field of electrochemical energy storage.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"15 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annealing condition engineering of electrospun iron-titanium oxide nanofibers for enhanced lithium storage performance\",\"authors\":\"Lisha Zhang, Fei Xie, Shujin Hao, Feiyu Diao, Yiqian Wang\",\"doi\":\"10.1016/j.electacta.2025.146746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron/titanium-based oxide compounds have garnered significant attention for their promising applications in lithium-ion batteries. To implement this, a large-scale fabrication technique such as electrospinning has become pivotal for the preparation of one-dimensional iron/titanium-based oxide nanocomposites. However, there exists a notable gap in understanding the influence of annealing conditions on the structure, morphology and electrochemical properties of resultant products. In this work, iron-titanium-based oxide nanofibers are produced <em>via</em> electrospinning followed by subsequent annealing, and the influence of annealing atmospheres on the products is systematically investigated. When annealed at 600°C in an argon atmosphere, the product is carbon nanofibers loaded with FeTiO<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> nanoparticles (FeTiO<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/CNFs), while annealing in air the product is carbon nanofibers embedded with Fe<sub>2</sub>TiO<sub>5</sub> nanoparticles (Fe<sub>2</sub>TiO<sub>5</sub>/CNFs). Electrochemical tests demonstrate that FeTiO<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/CNFs maintain a capacity of 395.6 mAh g<sup>-1</sup> after 100 cycles at a current density of 0.2 A g<sup>-1</sup>, which is higher than that of Fe<sub>2</sub>TiO<sub>5</sub>/CNFs (174 mAh g<sup>-1</sup>) and Fe<sub>3</sub>O<sub>4</sub>/CNFs (314 mAh g<sup>-1</sup>). Moreover, FeTiO<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/CNFs present a remarkable rate capability, possessing a capacity of 212.1 mAh g<sup>-1</sup> at 2.0 A g<sup>-1</sup>. This excellent performance is attributed to the synergistic effect between FeTiO<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> and buffering effect of the carbon fibers. These findings highlight the significant application potential of iron/titanium oxides in the field of electrochemical energy storage.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2025.146746\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.146746","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

铁/钛基氧化物化合物因其在锂离子电池中的应用前景而受到广泛关注。为了实现这一目标,静电纺丝等大规模制造技术已成为制备一维铁/钛基氧化物纳米复合材料的关键。然而,在了解退火条件对所得产物的结构、形貌和电化学性能的影响方面存在着明显的差距。本文采用静电纺丝和退火法制备了铁钛基氧化物纳米纤维,并系统地研究了退火气氛对产物的影响。在600℃氩气气氛下退火时,产物为负载FeTiO3和Fe3O4纳米粒子的纳米碳纤维(FeTiO3/Fe3O4/CNFs),而在空气中退火时产物为包埋Fe2TiO5纳米粒子的纳米碳纤维(Fe2TiO5/CNFs)。电化学测试表明,在0.2 a g-1的电流密度下,FeTiO3/Fe3O4/CNFs在100次循环后保持395.6 mAh g-1的容量,高于Fe2TiO5/CNFs (174 mAh g-1)和Fe3O4/CNFs (314 mAh g-1)。此外,FeTiO3/Fe3O4/CNFs具有显著的倍率能力,在2.0 a g-1下具有212.1 mAh g-1的容量。这种优异的性能是由于FeTiO3和Fe3O4之间的协同作用和碳纤维的缓冲作用。这些发现凸显了铁/钛氧化物在电化学储能领域的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annealing condition engineering of electrospun iron-titanium oxide nanofibers for enhanced lithium storage performance
Iron/titanium-based oxide compounds have garnered significant attention for their promising applications in lithium-ion batteries. To implement this, a large-scale fabrication technique such as electrospinning has become pivotal for the preparation of one-dimensional iron/titanium-based oxide nanocomposites. However, there exists a notable gap in understanding the influence of annealing conditions on the structure, morphology and electrochemical properties of resultant products. In this work, iron-titanium-based oxide nanofibers are produced via electrospinning followed by subsequent annealing, and the influence of annealing atmospheres on the products is systematically investigated. When annealed at 600°C in an argon atmosphere, the product is carbon nanofibers loaded with FeTiO3 and Fe3O4 nanoparticles (FeTiO3/Fe3O4/CNFs), while annealing in air the product is carbon nanofibers embedded with Fe2TiO5 nanoparticles (Fe2TiO5/CNFs). Electrochemical tests demonstrate that FeTiO3/Fe3O4/CNFs maintain a capacity of 395.6 mAh g-1 after 100 cycles at a current density of 0.2 A g-1, which is higher than that of Fe2TiO5/CNFs (174 mAh g-1) and Fe3O4/CNFs (314 mAh g-1). Moreover, FeTiO3/Fe3O4/CNFs present a remarkable rate capability, possessing a capacity of 212.1 mAh g-1 at 2.0 A g-1. This excellent performance is attributed to the synergistic effect between FeTiO3 and Fe3O4 and buffering effect of the carbon fibers. These findings highlight the significant application potential of iron/titanium oxides in the field of electrochemical energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信