动态双中心耦合协同催化高效氧还原

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingjing Jiang, Jiulong Wu, Chenyu Yang, Shuowen Bo, Jing Zhang, Baojie Li, Yuhao Zhang, Qizheng An, Xin Chen, Qinghua Liu, Wanlin Zhou
{"title":"动态双中心耦合协同催化高效氧还原","authors":"Jingjing Jiang,&nbsp;Jiulong Wu,&nbsp;Chenyu Yang,&nbsp;Shuowen Bo,&nbsp;Jing Zhang,&nbsp;Baojie Li,&nbsp;Yuhao Zhang,&nbsp;Qizheng An,&nbsp;Xin Chen,&nbsp;Qinghua Liu,&nbsp;Wanlin Zhou","doi":"10.1002/anie.202510188","DOIUrl":null,"url":null,"abstract":"<p>The oxygen reduction reaction (ORR) suffers from inherent kinetic limitations arising from the competitive adsorption behavior of *OOH intermediates and their divergent conversion pathways toward either the 4e⁻-dominant route or the 2e⁻-peroxide byproduct. Conventional single-component catalysts fundamentally lack temporal-spatial control to simultaneously accelerate O─O bond cleavage while suppressing *H<sub>2</sub>O<sub>2</sub> desorption. To overcome this kinetic dilemma, herein, we propose a dynamically dual-center coupled synergistic (DCCS) catalytic mechanism enabled by precisely engineered PdRh─Pt nanosheet binary-component interfaces. Multidimensional in situ synchrotron radiation spectroscopy and theoretical studies reveal that the activated 4e⁻ pathway primarily occurs at PdRh sites. Additionally, Pt centers selectively reduce *OOH to *O and *H<sub>2</sub>O<sub>2</sub>, whereas neighboring PdRh sites facilitate ultrafast *H<sub>2</sub>O<sub>2</sub> migration and dissociation, effectively complementing the 4e⁻-dominant pathway. Hence, the DCCS catalysis redirects traditionally divergent product pathways toward a singular target product. This interfacial kinetic synergy achieves ultrahigh 4e⁻ kinetics, demonstrated by a six-fold increase of turnover frequency compared to that of commercial Pt/C. Moreover, the derived rechargeable Zn‒air batteries demonstrate exceptional stability over 200 h, establishing a new design principle for breaking kinetics trade-offs in heterogeneous catalysis through molecularly scheduling reaction pathways.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 35","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamically Dual-Center Coupled Synergistic Catalysis for Highly Efficient Oxygen Reduction\",\"authors\":\"Jingjing Jiang,&nbsp;Jiulong Wu,&nbsp;Chenyu Yang,&nbsp;Shuowen Bo,&nbsp;Jing Zhang,&nbsp;Baojie Li,&nbsp;Yuhao Zhang,&nbsp;Qizheng An,&nbsp;Xin Chen,&nbsp;Qinghua Liu,&nbsp;Wanlin Zhou\",\"doi\":\"10.1002/anie.202510188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The oxygen reduction reaction (ORR) suffers from inherent kinetic limitations arising from the competitive adsorption behavior of *OOH intermediates and their divergent conversion pathways toward either the 4e⁻-dominant route or the 2e⁻-peroxide byproduct. Conventional single-component catalysts fundamentally lack temporal-spatial control to simultaneously accelerate O─O bond cleavage while suppressing *H<sub>2</sub>O<sub>2</sub> desorption. To overcome this kinetic dilemma, herein, we propose a dynamically dual-center coupled synergistic (DCCS) catalytic mechanism enabled by precisely engineered PdRh─Pt nanosheet binary-component interfaces. Multidimensional in situ synchrotron radiation spectroscopy and theoretical studies reveal that the activated 4e⁻ pathway primarily occurs at PdRh sites. Additionally, Pt centers selectively reduce *OOH to *O and *H<sub>2</sub>O<sub>2</sub>, whereas neighboring PdRh sites facilitate ultrafast *H<sub>2</sub>O<sub>2</sub> migration and dissociation, effectively complementing the 4e⁻-dominant pathway. Hence, the DCCS catalysis redirects traditionally divergent product pathways toward a singular target product. This interfacial kinetic synergy achieves ultrahigh 4e⁻ kinetics, demonstrated by a six-fold increase of turnover frequency compared to that of commercial Pt/C. Moreover, the derived rechargeable Zn‒air batteries demonstrate exceptional stability over 200 h, establishing a new design principle for breaking kinetics trade-offs in heterogeneous catalysis through molecularly scheduling reaction pathways.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 35\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202510188\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202510188","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧还原反应(ORR)受到固有的动力学限制,这是由于*OOH中间体的竞争性吸附行为以及它们向4e -毒血症或2e -过氧化氢副产物的不同转化途径造成的。传统的单组分催化剂从根本上缺乏时空控制,无法同时加速O-O键的裂解,同时抑制H2O2的解吸。为了克服这一动力学困境,本文提出了一种动态双中心耦合协同(DCCS)催化机制,该机制由精确设计的PdRh - Pt纳米片二元组分界面实现。多维同步辐射光谱学和理论研究表明,被激活的4e(毒血症)途径主要发生在PdRh位点。此外,Pt中心选择性地将*OOH还原为*O和*H2O2,而邻近的PdRh位点促进超快的*H2O2迁移和解离,有效地补充了4e -显性途径。因此,DCCS催化将传统上分散的产物路径重定向到单一的目标产物。这种界面动力学协同作用实现了超高的4e毒血症,与Pt/C相比,其毒血症发生频率增加了6倍。此外,衍生的可充电锌空气电池在200小时内表现出优异的稳定性,为通过分子调度反应途径打破多相催化动力学平衡建立了新的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamically Dual-Center Coupled Synergistic Catalysis for Highly Efficient Oxygen Reduction

Dynamically Dual-Center Coupled Synergistic Catalysis for Highly Efficient Oxygen Reduction

The oxygen reduction reaction (ORR) suffers from inherent kinetic limitations arising from the competitive adsorption behavior of *OOH intermediates and their divergent conversion pathways toward either the 4e⁻-dominant route or the 2e⁻-peroxide byproduct. Conventional single-component catalysts fundamentally lack temporal-spatial control to simultaneously accelerate O─O bond cleavage while suppressing *H2O2 desorption. To overcome this kinetic dilemma, herein, we propose a dynamically dual-center coupled synergistic (DCCS) catalytic mechanism enabled by precisely engineered PdRh─Pt nanosheet binary-component interfaces. Multidimensional in situ synchrotron radiation spectroscopy and theoretical studies reveal that the activated 4e⁻ pathway primarily occurs at PdRh sites. Additionally, Pt centers selectively reduce *OOH to *O and *H2O2, whereas neighboring PdRh sites facilitate ultrafast *H2O2 migration and dissociation, effectively complementing the 4e⁻-dominant pathway. Hence, the DCCS catalysis redirects traditionally divergent product pathways toward a singular target product. This interfacial kinetic synergy achieves ultrahigh 4e⁻ kinetics, demonstrated by a six-fold increase of turnover frequency compared to that of commercial Pt/C. Moreover, the derived rechargeable Zn‒air batteries demonstrate exceptional stability over 200 h, establishing a new design principle for breaking kinetics trade-offs in heterogeneous catalysis through molecularly scheduling reaction pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信