不确定条件下生产效率与环境效率的估算

IF 8.4 2区 经济学 Q1 AGRICULTURAL ECONOMICS & POLICY
Robert G. Chambers, Saurav R. Kunwar, John Quiggin, Teresa Serra, Shuo Wang
{"title":"不确定条件下生产效率与环境效率的估算","authors":"Robert G. Chambers, Saurav R. Kunwar, John Quiggin, Teresa Serra, Shuo Wang","doi":"10.1146/annurev-resource-121523-015001","DOIUrl":null,"url":null,"abstract":"The Arrow-Savage-Debreu framework provides a theoretical foundation for analyzing productivity and efficiency under uncertainty. It treats uncertainty while preserving core economic principles and offering insights into producer decision-making. A key challenge is to reconcile ex ante conceptual models with ex post empirical data. We survey econometric and mathematical programming methods used to address this challenge. These methods include stochastic production functions, latent state models, auxiliary-variable methods, and data envelopment analysis techniques. We discuss the strengths and limitations of each method, highlighting how they handle the fundamental challenge of measuring efficiency when production decisions are made under uncertainty but only realized outcomes are observable. Our analysis demonstrates that such measurement complexity necessitates carefully designed empirical approaches to capture the true nature of production and environmental efficiency.","PeriodicalId":48856,"journal":{"name":"Annual Review of Resource Economics","volume":"8 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Production and Environmental Efficiency Under Uncertainty\",\"authors\":\"Robert G. Chambers, Saurav R. Kunwar, John Quiggin, Teresa Serra, Shuo Wang\",\"doi\":\"10.1146/annurev-resource-121523-015001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Arrow-Savage-Debreu framework provides a theoretical foundation for analyzing productivity and efficiency under uncertainty. It treats uncertainty while preserving core economic principles and offering insights into producer decision-making. A key challenge is to reconcile ex ante conceptual models with ex post empirical data. We survey econometric and mathematical programming methods used to address this challenge. These methods include stochastic production functions, latent state models, auxiliary-variable methods, and data envelopment analysis techniques. We discuss the strengths and limitations of each method, highlighting how they handle the fundamental challenge of measuring efficiency when production decisions are made under uncertainty but only realized outcomes are observable. Our analysis demonstrates that such measurement complexity necessitates carefully designed empirical approaches to capture the true nature of production and environmental efficiency.\",\"PeriodicalId\":48856,\"journal\":{\"name\":\"Annual Review of Resource Economics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Resource Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-resource-121523-015001\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ECONOMICS & POLICY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Resource Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1146/annurev-resource-121523-015001","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0

摘要

Arrow-Savage-Debreu框架为分析不确定条件下的生产率和效率提供了理论基础。它在处理不确定性的同时保留了核心经济原则,并提供了对生产者决策的见解。一个关键的挑战是调和事前的概念模型与事后的经验数据。我们调查了用于解决这一挑战的计量经济学和数学规划方法。这些方法包括随机生产函数、潜在状态模型、辅助变量方法和数据包络分析技术。我们讨论了每种方法的优势和局限性,强调了它们如何处理在不确定的生产决策下测量效率的基本挑战,但只有实现的结果是可观察的。我们的分析表明,这种测量的复杂性需要精心设计的经验方法来捕捉生产和环境效率的真实本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Production and Environmental Efficiency Under Uncertainty
The Arrow-Savage-Debreu framework provides a theoretical foundation for analyzing productivity and efficiency under uncertainty. It treats uncertainty while preserving core economic principles and offering insights into producer decision-making. A key challenge is to reconcile ex ante conceptual models with ex post empirical data. We survey econometric and mathematical programming methods used to address this challenge. These methods include stochastic production functions, latent state models, auxiliary-variable methods, and data envelopment analysis techniques. We discuss the strengths and limitations of each method, highlighting how they handle the fundamental challenge of measuring efficiency when production decisions are made under uncertainty but only realized outcomes are observable. Our analysis demonstrates that such measurement complexity necessitates carefully designed empirical approaches to capture the true nature of production and environmental efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Resource Economics
Annual Review of Resource Economics AGRICULTURAL ECONOMICS & POLICY-
CiteScore
9.40
自引率
0.00%
发文量
34
期刊介绍: The Annual Review of Resource Economics provides authoritative critical reviews evaluating the most significant research developments in resource economics, focusing on agricultural economics, environmental economics, renewable resources, and exhaustible resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信