线粒体靶向NAD+/O2共递送互穿网络水凝胶用于呼吸链修复和骨关节炎治疗

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaolong Shen, Jinquan Hu, Chen Wang, Haoyi Wang, Huajian Zhong, Zifan Zhang, Guoqing Wen, Lei Wang, Minjie Dong, Ye Tian
{"title":"线粒体靶向NAD+/O2共递送互穿网络水凝胶用于呼吸链修复和骨关节炎治疗","authors":"Xiaolong Shen, Jinquan Hu, Chen Wang, Haoyi Wang, Huajian Zhong, Zifan Zhang, Guoqing Wen, Lei Wang, Minjie Dong, Ye Tian","doi":"10.1016/j.jconrel.2025.113975","DOIUrl":null,"url":null,"abstract":"Mitochondrial respiratory chain dysfunction-induced chondrocyte senescence is a key contributor to the progression of osteoarthritis (OA), yet effective strategies for restoring mitochondrial respiratory homeostasis remain elusive. Herein, we develop a charge-guided micro/nano interpenetrating network hydrogel that targets cartilage and delivers a mitochondria-directed MnO<sub>2</sub>-based nanoparticles, in which the nanozyme catalyzes intracellular hydrogen peroxide to generate oxygen while releasing nicotinamide adenine dinucleotide (NAD<sup>+</sup>) precursor via particle degradation, thereby enabling synchronized electron donor and acceptor supply to fully reactivate the mitochondrial respiratory chain and alleviate chondrocyte senescence. Comprehensive evaluations reveal that this system enhances the activity of key antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase, elevates the intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrogen (NAD<sup>+</sup>/NADH) ratio, and suppresses the secretion of senescence-associated secretory phenotype factors, thereby preserving cartilage matrix integrity. Collectively, these findings underscore the therapeutic potential of this dual-delivery platform to achieve full-length mitochondrial respiratory chain activation, offering a compelling strategy to mitigate chondrocyte senescence and impede OA progression.","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"57 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondria-targeted NAD+/O2 co-delivery interpenetrating network hydrogel for respiratory chain restoration and osteoarthritis therapy\",\"authors\":\"Xiaolong Shen, Jinquan Hu, Chen Wang, Haoyi Wang, Huajian Zhong, Zifan Zhang, Guoqing Wen, Lei Wang, Minjie Dong, Ye Tian\",\"doi\":\"10.1016/j.jconrel.2025.113975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondrial respiratory chain dysfunction-induced chondrocyte senescence is a key contributor to the progression of osteoarthritis (OA), yet effective strategies for restoring mitochondrial respiratory homeostasis remain elusive. Herein, we develop a charge-guided micro/nano interpenetrating network hydrogel that targets cartilage and delivers a mitochondria-directed MnO<sub>2</sub>-based nanoparticles, in which the nanozyme catalyzes intracellular hydrogen peroxide to generate oxygen while releasing nicotinamide adenine dinucleotide (NAD<sup>+</sup>) precursor via particle degradation, thereby enabling synchronized electron donor and acceptor supply to fully reactivate the mitochondrial respiratory chain and alleviate chondrocyte senescence. Comprehensive evaluations reveal that this system enhances the activity of key antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase, elevates the intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrogen (NAD<sup>+</sup>/NADH) ratio, and suppresses the secretion of senescence-associated secretory phenotype factors, thereby preserving cartilage matrix integrity. Collectively, these findings underscore the therapeutic potential of this dual-delivery platform to achieve full-length mitochondrial respiratory chain activation, offering a compelling strategy to mitigate chondrocyte senescence and impede OA progression.\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jconrel.2025.113975\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2025.113975","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体呼吸链功能障碍诱导的软骨细胞衰老是骨关节炎(OA)进展的关键因素,但恢复线粒体呼吸稳态的有效策略仍然难以捉摸。在此,我们开发了一种电荷引导的微/纳米互穿网络水凝胶,它以软骨为目标,并提供线粒体导向的mno2纳米颗粒,其中纳米酶催化细胞内过氧化氢生成氧气,同时通过颗粒降解释放烟酰胺腺嘌呤二核苷酸(NAD+)前体。从而使同步的电子供体和受体供应完全重新激活线粒体呼吸链并减轻软骨细胞衰老。综合评价表明,该系统可增强细胞内关键抗氧化酶如超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶的活性,提高细胞内烟酰胺腺嘌呤二核苷酸/烟酰胺腺嘌呤二核苷酸氢(NAD+/NADH)比值,抑制衰老相关分泌表型因子的分泌,从而保持软骨基质的完整性。总的来说,这些发现强调了这种双给药平台在实现全长线粒体呼吸链激活方面的治疗潜力,为减轻软骨细胞衰老和阻碍OA进展提供了一种令人信服的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitochondria-targeted NAD+/O2 co-delivery interpenetrating network hydrogel for respiratory chain restoration and osteoarthritis therapy

Mitochondria-targeted NAD+/O2 co-delivery interpenetrating network hydrogel for respiratory chain restoration and osteoarthritis therapy
Mitochondrial respiratory chain dysfunction-induced chondrocyte senescence is a key contributor to the progression of osteoarthritis (OA), yet effective strategies for restoring mitochondrial respiratory homeostasis remain elusive. Herein, we develop a charge-guided micro/nano interpenetrating network hydrogel that targets cartilage and delivers a mitochondria-directed MnO2-based nanoparticles, in which the nanozyme catalyzes intracellular hydrogen peroxide to generate oxygen while releasing nicotinamide adenine dinucleotide (NAD+) precursor via particle degradation, thereby enabling synchronized electron donor and acceptor supply to fully reactivate the mitochondrial respiratory chain and alleviate chondrocyte senescence. Comprehensive evaluations reveal that this system enhances the activity of key antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase, elevates the intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrogen (NAD+/NADH) ratio, and suppresses the secretion of senescence-associated secretory phenotype factors, thereby preserving cartilage matrix integrity. Collectively, these findings underscore the therapeutic potential of this dual-delivery platform to achieve full-length mitochondrial respiratory chain activation, offering a compelling strategy to mitigate chondrocyte senescence and impede OA progression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信