{"title":"复杂散射介质中的鬼影衍射:原理和应用","authors":"Yin Xiao, Wen Chen","doi":"10.1063/5.0231769","DOIUrl":null,"url":null,"abstract":"Ghost diffraction has been widely studied from quantum to classical to computational, and its applications in imaging and communication have been continuously presented. This review comprehensively analyzes ghost diffraction principles, focusing on communication and imaging applications in complex scattering media. This review reports the challenges in ghost communication and imaging when complex scattering media exist and describes promising approaches to overcoming the challenges. In terms of ghost communication in complex environments, the generation of information carriers using various methods is described, e.g., zero-frequency component replacement, untrained neural networks, and iterative algorithms, etc. The methods exhibit high robustness in high-fidelity data transmission, and physically secured communication can be realized. In terms of ghost imaging (GI) in complex environments, the enhancement of spatial resolution is described and discussed. The integration with correction approaches provides a promising direction to achieving high robustness in GI in complex environments. Orbital angular momentum transmission based on GI is discussed, and dual-modality approaches are illustrated for simultaneous implementations of free-space transmission and imaging. High-resolution microscopic imaging with single-pixel detection in complex media is also presented. With the introduction and comparison of the state of the art on ghost diffraction in complex media and its applications, this review would inspire future research in ghost diffraction and the exploration of new applications from quantum to classical to computational.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"44 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ghost diffraction in complex scattering media: Principles and applications\",\"authors\":\"Yin Xiao, Wen Chen\",\"doi\":\"10.1063/5.0231769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ghost diffraction has been widely studied from quantum to classical to computational, and its applications in imaging and communication have been continuously presented. This review comprehensively analyzes ghost diffraction principles, focusing on communication and imaging applications in complex scattering media. This review reports the challenges in ghost communication and imaging when complex scattering media exist and describes promising approaches to overcoming the challenges. In terms of ghost communication in complex environments, the generation of information carriers using various methods is described, e.g., zero-frequency component replacement, untrained neural networks, and iterative algorithms, etc. The methods exhibit high robustness in high-fidelity data transmission, and physically secured communication can be realized. In terms of ghost imaging (GI) in complex environments, the enhancement of spatial resolution is described and discussed. The integration with correction approaches provides a promising direction to achieving high robustness in GI in complex environments. Orbital angular momentum transmission based on GI is discussed, and dual-modality approaches are illustrated for simultaneous implementations of free-space transmission and imaging. High-resolution microscopic imaging with single-pixel detection in complex media is also presented. With the introduction and comparison of the state of the art on ghost diffraction in complex media and its applications, this review would inspire future research in ghost diffraction and the exploration of new applications from quantum to classical to computational.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231769\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0231769","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Ghost diffraction in complex scattering media: Principles and applications
Ghost diffraction has been widely studied from quantum to classical to computational, and its applications in imaging and communication have been continuously presented. This review comprehensively analyzes ghost diffraction principles, focusing on communication and imaging applications in complex scattering media. This review reports the challenges in ghost communication and imaging when complex scattering media exist and describes promising approaches to overcoming the challenges. In terms of ghost communication in complex environments, the generation of information carriers using various methods is described, e.g., zero-frequency component replacement, untrained neural networks, and iterative algorithms, etc. The methods exhibit high robustness in high-fidelity data transmission, and physically secured communication can be realized. In terms of ghost imaging (GI) in complex environments, the enhancement of spatial resolution is described and discussed. The integration with correction approaches provides a promising direction to achieving high robustness in GI in complex environments. Orbital angular momentum transmission based on GI is discussed, and dual-modality approaches are illustrated for simultaneous implementations of free-space transmission and imaging. High-resolution microscopic imaging with single-pixel detection in complex media is also presented. With the introduction and comparison of the state of the art on ghost diffraction in complex media and its applications, this review would inspire future research in ghost diffraction and the exploration of new applications from quantum to classical to computational.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.