范德华异质结构层间激子输运的室温远程光学探测

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Huilin Zhang, Chunjiao Wang, Yuexing Xia, Lan Zhang, Qianqian Guo, Maowen Ge, Weijie Zhao, Xinfeng Liu, Tao Wang, Wei Du
{"title":"范德华异质结构层间激子输运的室温远程光学探测","authors":"Huilin Zhang, Chunjiao Wang, Yuexing Xia, Lan Zhang, Qianqian Guo, Maowen Ge, Weijie Zhao, Xinfeng Liu, Tao Wang, Wei Du","doi":"10.1002/lpor.202500424","DOIUrl":null,"url":null,"abstract":"Interlayer excitons in transition metal dichalcogenide (TMD) heterostructures feature long lifetime and superior transport properties, yet their room‐temperature optical tracking remains challenging due to weak emission. Here, remote optical probing of interlayer exciton transport in a TMD heterostructure at room temperature is demonstrated. Optically generated interlayer excitons diffuse through the heterostructure and dissociate at boundaries, where liberated carriers further migrate into monolayers and recombine with native charges to give bright intralayer emission. With the intralayer emission as a remote optical probe, unique properties of interlayer exciton transport are observed including the characteristic decay length of ≈4.5 µm, the power‐dependent phase transition between exciton gas and electron‐hole plasma, the thermally activated transport enhancement, and the fast diffusivity of ≈2100 cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>. The research offers a new route for the study of interlayer exciton transport with enhanced visibility, which paves the way for room‐temperature exciton transistors and circuits.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"45 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room‐Temperature Remote Optical Probing of Interlayer Exciton Transport in Van Der Waals Heterostructures\",\"authors\":\"Huilin Zhang, Chunjiao Wang, Yuexing Xia, Lan Zhang, Qianqian Guo, Maowen Ge, Weijie Zhao, Xinfeng Liu, Tao Wang, Wei Du\",\"doi\":\"10.1002/lpor.202500424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interlayer excitons in transition metal dichalcogenide (TMD) heterostructures feature long lifetime and superior transport properties, yet their room‐temperature optical tracking remains challenging due to weak emission. Here, remote optical probing of interlayer exciton transport in a TMD heterostructure at room temperature is demonstrated. Optically generated interlayer excitons diffuse through the heterostructure and dissociate at boundaries, where liberated carriers further migrate into monolayers and recombine with native charges to give bright intralayer emission. With the intralayer emission as a remote optical probe, unique properties of interlayer exciton transport are observed including the characteristic decay length of ≈4.5 µm, the power‐dependent phase transition between exciton gas and electron‐hole plasma, the thermally activated transport enhancement, and the fast diffusivity of ≈2100 cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>. The research offers a new route for the study of interlayer exciton transport with enhanced visibility, which paves the way for room‐temperature exciton transistors and circuits.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500424\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500424","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二硫化物(TMD)异质结构中的层间激子具有长寿命和优越的输运特性,但由于发射弱,其室温光学跟踪仍然具有挑战性。本文演示了室温下TMD异质结构层间激子输运的远程光学探测。光学产生的层间激子通过异质结构扩散并在边界处解离,释放的载流子进一步迁移到单层中,并与原生电荷重新结合,从而产生明亮的层内发射。利用层内发射作为远程光学探针,观察到层间激子输运的独特性质,包括特征衰减长度≈4.5µm,激子气体和电子空穴等离子体之间的功率依赖相变,热激活输运增强以及≈2100 cm2 s−1的快速扩散率。该研究为研究具有增强可视性的层间激子输运提供了一条新的途径,为室温激子晶体管和电路的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Room‐Temperature Remote Optical Probing of Interlayer Exciton Transport in Van Der Waals Heterostructures
Interlayer excitons in transition metal dichalcogenide (TMD) heterostructures feature long lifetime and superior transport properties, yet their room‐temperature optical tracking remains challenging due to weak emission. Here, remote optical probing of interlayer exciton transport in a TMD heterostructure at room temperature is demonstrated. Optically generated interlayer excitons diffuse through the heterostructure and dissociate at boundaries, where liberated carriers further migrate into monolayers and recombine with native charges to give bright intralayer emission. With the intralayer emission as a remote optical probe, unique properties of interlayer exciton transport are observed including the characteristic decay length of ≈4.5 µm, the power‐dependent phase transition between exciton gas and electron‐hole plasma, the thermally activated transport enhancement, and the fast diffusivity of ≈2100 cm2 s−1. The research offers a new route for the study of interlayer exciton transport with enhanced visibility, which paves the way for room‐temperature exciton transistors and circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信