探索俄歇电子发射放射性核素在错配修复缺陷细胞中的靶向DNA损伤:99Rh-和123i标记金属插入物的理论研究。

Alexandre França Velo, Lukas Carter, Michael Bellamy, Mike A Cornejo, Brian M Zeglis, John L Humm
{"title":"探索俄歇电子发射放射性核素在错配修复缺陷细胞中的靶向DNA损伤:99Rh-和123i标记金属插入物的理论研究。","authors":"Alexandre França Velo, Lukas Carter, Michael Bellamy, Mike A Cornejo, Brian M Zeglis, John L Humm","doi":"10.1080/09553002.2025.2517328","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Preserving the integrity of the genome is critical to healthy cellular growth and development. Under normal circumstances, the eukaryotic mismatch repair (MMR) machinery is effective at detecting DNA polymerase errors and maintaining the fidelity of the genome. However, cells with inactivated MMR machinery are prone to the accumulation of mutations and tumorigenesis. This study explores the theoretical potential of rhodium-99- and iodine-123-labeled DNA metalloinsertors as Auger electron-emitting radiotherapeutics for cancers characterized by MMR deficiency.</p><p><strong>Materials and methods: </strong>A Monte Carlo code was developed in MATLAB<sup>®</sup> to obtain Auger electron energy spectra for <sup>99</sup>Rh and <sup>123</sup>I. Using Geant4 track structure simulations, we determined the difference in effectiveness of these two Auger electron-emitting radionuclides in direct damage to DNA and the ability to produce double strand break damage (dsb) to the DNA comparing two different constructors 'G4EmDNAPhysics_option2' and 'G4EmDNAPhysics_option4'.</p><p><strong>Results: </strong>Differences in the Auger electron emission spectra of <sup>99</sup>Rh and <sup>123</sup>I arise from their electronic structure: <sup>123</sup>I favors more complex cascades and ultra-low-energy electrons, while <sup>99</sup>Rh produces electrons with energies more suited to DNA damage. Despite similar total electron yields, the emissions of <sup>99</sup>Rh are more effective at causing dsb (0.71 <i>vs.</i> 0.60 dsb/decay for <sup>99</sup>Rh and <sup>123</sup>I, respectively, using constructor 'G4EmDNAPhysics_option2' and 0.81 dsb/decay for <sup>99</sup>Rh <i>vs.</i> 0.71 dsb/decay for <sup>123</sup>I when using 'G4EmDNAPhysics_option4'.</p><p><strong>Conclusion: </strong>This theoretical study leverages both simulation and comparative analyses to identify <sup>99</sup>Rh as a promising Auger electron-emitting nuclide for radiotheranostics, as it offers superior DNA damage efficacy compared to <sup>123</sup>I.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Auger electron-emitting radionuclides for targeted DNA damage in mismatch repair-deficient cells: a theoretical study of <sup>99</sup>Rh- and <sup>123</sup>I-labeled metalloinsertors.\",\"authors\":\"Alexandre França Velo, Lukas Carter, Michael Bellamy, Mike A Cornejo, Brian M Zeglis, John L Humm\",\"doi\":\"10.1080/09553002.2025.2517328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Preserving the integrity of the genome is critical to healthy cellular growth and development. Under normal circumstances, the eukaryotic mismatch repair (MMR) machinery is effective at detecting DNA polymerase errors and maintaining the fidelity of the genome. However, cells with inactivated MMR machinery are prone to the accumulation of mutations and tumorigenesis. This study explores the theoretical potential of rhodium-99- and iodine-123-labeled DNA metalloinsertors as Auger electron-emitting radiotherapeutics for cancers characterized by MMR deficiency.</p><p><strong>Materials and methods: </strong>A Monte Carlo code was developed in MATLAB<sup>®</sup> to obtain Auger electron energy spectra for <sup>99</sup>Rh and <sup>123</sup>I. Using Geant4 track structure simulations, we determined the difference in effectiveness of these two Auger electron-emitting radionuclides in direct damage to DNA and the ability to produce double strand break damage (dsb) to the DNA comparing two different constructors 'G4EmDNAPhysics_option2' and 'G4EmDNAPhysics_option4'.</p><p><strong>Results: </strong>Differences in the Auger electron emission spectra of <sup>99</sup>Rh and <sup>123</sup>I arise from their electronic structure: <sup>123</sup>I favors more complex cascades and ultra-low-energy electrons, while <sup>99</sup>Rh produces electrons with energies more suited to DNA damage. Despite similar total electron yields, the emissions of <sup>99</sup>Rh are more effective at causing dsb (0.71 <i>vs.</i> 0.60 dsb/decay for <sup>99</sup>Rh and <sup>123</sup>I, respectively, using constructor 'G4EmDNAPhysics_option2' and 0.81 dsb/decay for <sup>99</sup>Rh <i>vs.</i> 0.71 dsb/decay for <sup>123</sup>I when using 'G4EmDNAPhysics_option4'.</p><p><strong>Conclusion: </strong>This theoretical study leverages both simulation and comparative analyses to identify <sup>99</sup>Rh as a promising Auger electron-emitting nuclide for radiotheranostics, as it offers superior DNA damage efficacy compared to <sup>123</sup>I.</p>\",\"PeriodicalId\":94057,\"journal\":{\"name\":\"International journal of radiation biology\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of radiation biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09553002.2025.2517328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2025.2517328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:保持基因组的完整性对健康的细胞生长和发育至关重要。在正常情况下,真核错配修复(MMR)机制在检测DNA聚合酶错误和维持基因组保真度方面是有效的。然而,MMR机制失活的细胞容易发生突变积累和肿瘤发生。本研究探讨了铑-99和碘-123标记的DNA金属插入物作为俄歇电子放射治疗以MMR缺乏症为特征的癌症的理论潜力。材料和方法:在MATLAB®中开发了蒙特卡罗代码,以获得99Rh和123I的俄歇电子能谱。使用Geant4轨道结构模拟,我们确定了这两种俄格电子发射放射性核素对DNA直接损伤的有效性的差异,以及比较两种不同构建器“g4emdnphysics_option2”和“g4emdnphysics_option4”对DNA产生双链断裂损伤(dsb)的能力。结果:99Rh和123I的俄歇电子发射谱的差异是由它们的电子结构引起的:123I倾向于更复杂的级联和超低能电子,而99Rh产生的电子能量更适合DNA损伤。尽管总电子产率相似,但使用构造函数“g4emdnphysics_option2”时,99Rh的发射更有效地引起dsb(分别为0.71 dsb/ 99Rh和0.60 dsb/ 123I),使用构造函数“g4emdnphysics_option4”时,99Rh的发射更有效地引起dsb/ 99Rh和0.71 dsb/ 123I的衰变。结论:该理论研究利用模拟和比较分析来确定99Rh是一种有前途的俄热电子发射核素,用于放射治疗,因为它比123I具有更好的DNA损伤功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Auger electron-emitting radionuclides for targeted DNA damage in mismatch repair-deficient cells: a theoretical study of 99Rh- and 123I-labeled metalloinsertors.

Purpose: Preserving the integrity of the genome is critical to healthy cellular growth and development. Under normal circumstances, the eukaryotic mismatch repair (MMR) machinery is effective at detecting DNA polymerase errors and maintaining the fidelity of the genome. However, cells with inactivated MMR machinery are prone to the accumulation of mutations and tumorigenesis. This study explores the theoretical potential of rhodium-99- and iodine-123-labeled DNA metalloinsertors as Auger electron-emitting radiotherapeutics for cancers characterized by MMR deficiency.

Materials and methods: A Monte Carlo code was developed in MATLAB® to obtain Auger electron energy spectra for 99Rh and 123I. Using Geant4 track structure simulations, we determined the difference in effectiveness of these two Auger electron-emitting radionuclides in direct damage to DNA and the ability to produce double strand break damage (dsb) to the DNA comparing two different constructors 'G4EmDNAPhysics_option2' and 'G4EmDNAPhysics_option4'.

Results: Differences in the Auger electron emission spectra of 99Rh and 123I arise from their electronic structure: 123I favors more complex cascades and ultra-low-energy electrons, while 99Rh produces electrons with energies more suited to DNA damage. Despite similar total electron yields, the emissions of 99Rh are more effective at causing dsb (0.71 vs. 0.60 dsb/decay for 99Rh and 123I, respectively, using constructor 'G4EmDNAPhysics_option2' and 0.81 dsb/decay for 99Rh vs. 0.71 dsb/decay for 123I when using 'G4EmDNAPhysics_option4'.

Conclusion: This theoretical study leverages both simulation and comparative analyses to identify 99Rh as a promising Auger electron-emitting nuclide for radiotheranostics, as it offers superior DNA damage efficacy compared to 123I.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信