初级视觉皮层的感受野是否跨越了感受野延伸程度的变异性?

IF 1.5 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Tony Lindeberg
{"title":"初级视觉皮层的感受野是否跨越了感受野延伸程度的变异性?","authors":"Tony Lindeberg","doi":"10.1007/s10827-025-00907-4","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the results of combining (i) theoretical analysis regarding connections between the orientation selectivity and the elongation of receptive fields for the affine Gaussian derivative model with (ii) biological measurements of orientation selectivity in the primary visual cortex to investigate if (iii) the receptive fields can be regarded as spanning a variability in the degree of elongation. From an in-depth theoretical analysis of idealized models for the receptive fields of simple and complex cells in the primary visual cortex, we established that the orientation selectivity becomes more narrow with increasing elongation of the receptive fields. Combined with previously established biological results, concerning broad vs. sharp orientation tuning of visual neurons in the primary visual cortex, as well as previous experimental results concerning distributions of the resultant of the orientation selectivity curves for simple and complex cells, we show that these results are consistent with the receptive fields spanning a variability over the degree of elongation of the receptive fields. We also show that our principled theoretical model for visual receptive fields leads to qualitatively similar types of deviations from a uniform histogram of the resultant descriptor of the orientation selectivity curves for simple cells, as can be observed in the results from biological experiments. To firmly investigate the validity of the underlying working hypothesis, we finally formulate a set of testable predictions for biological experiments, to characterize the predicted systematic variability in the elongation over the orientation maps in higher mammals, and its relations to the pinwheel structure.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do the receptive fields in the primary visual cortex span a variability over the degree of elongation of the receptive fields?\",\"authors\":\"Tony Lindeberg\",\"doi\":\"10.1007/s10827-025-00907-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the results of combining (i) theoretical analysis regarding connections between the orientation selectivity and the elongation of receptive fields for the affine Gaussian derivative model with (ii) biological measurements of orientation selectivity in the primary visual cortex to investigate if (iii) the receptive fields can be regarded as spanning a variability in the degree of elongation. From an in-depth theoretical analysis of idealized models for the receptive fields of simple and complex cells in the primary visual cortex, we established that the orientation selectivity becomes more narrow with increasing elongation of the receptive fields. Combined with previously established biological results, concerning broad vs. sharp orientation tuning of visual neurons in the primary visual cortex, as well as previous experimental results concerning distributions of the resultant of the orientation selectivity curves for simple and complex cells, we show that these results are consistent with the receptive fields spanning a variability over the degree of elongation of the receptive fields. We also show that our principled theoretical model for visual receptive fields leads to qualitatively similar types of deviations from a uniform histogram of the resultant descriptor of the orientation selectivity curves for simple cells, as can be observed in the results from biological experiments. To firmly investigate the validity of the underlying working hypothesis, we finally formulate a set of testable predictions for biological experiments, to characterize the predicted systematic variability in the elongation over the orientation maps in higher mammals, and its relations to the pinwheel structure.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-025-00907-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-025-00907-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了结合(i)对仿射高斯导数模型的取向选择性和感受野延伸之间的联系的理论分析,以及(ii)初级视觉皮层中取向选择性的生物测量,以研究(iii)感受野是否可以被视为跨越延伸程度的可变性。通过对初级视觉皮层简单和复杂细胞接受野的理想模型进行深入的理论分析,我们确定了随着接受野的延长,定向选择性变得更窄。结合先前建立的生物学结果,关于初级视觉皮层中视觉神经元的宽与锐定向调谐,以及先前关于简单和复杂细胞定向选择曲线结果分布的实验结果,我们表明这些结果与感受野跨越接受野伸长程度的变异性是一致的。我们还表明,我们的视觉感受野的原则理论模型导致了从简单细胞的定向选择曲线的统一直方图的结果描述符的定性相似类型的偏差,可以从生物学实验的结果中观察到。为了验证这一假设的有效性,我们最终制定了一套可测试的生物实验预测,以表征高等哺乳动物取向图上延伸率的预测系统变异性及其与风车结构的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Do the receptive fields in the primary visual cortex span a variability over the degree of elongation of the receptive fields?

This paper presents the results of combining (i) theoretical analysis regarding connections between the orientation selectivity and the elongation of receptive fields for the affine Gaussian derivative model with (ii) biological measurements of orientation selectivity in the primary visual cortex to investigate if (iii) the receptive fields can be regarded as spanning a variability in the degree of elongation. From an in-depth theoretical analysis of idealized models for the receptive fields of simple and complex cells in the primary visual cortex, we established that the orientation selectivity becomes more narrow with increasing elongation of the receptive fields. Combined with previously established biological results, concerning broad vs. sharp orientation tuning of visual neurons in the primary visual cortex, as well as previous experimental results concerning distributions of the resultant of the orientation selectivity curves for simple and complex cells, we show that these results are consistent with the receptive fields spanning a variability over the degree of elongation of the receptive fields. We also show that our principled theoretical model for visual receptive fields leads to qualitatively similar types of deviations from a uniform histogram of the resultant descriptor of the orientation selectivity curves for simple cells, as can be observed in the results from biological experiments. To firmly investigate the validity of the underlying working hypothesis, we finally formulate a set of testable predictions for biological experiments, to characterize the predicted systematic variability in the elongation over the orientation maps in higher mammals, and its relations to the pinwheel structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信