个体参与者数据荟萃分析中系统缺失效应修正因子的多重归因。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Robert Thiesmeier, Scott M Hofer, Nicola Orsini
{"title":"个体参与者数据荟萃分析中系统缺失效应修正因子的多重归因。","authors":"Robert Thiesmeier, Scott M Hofer, Nicola Orsini","doi":"10.1177/09622802251348800","DOIUrl":null,"url":null,"abstract":"<p><p>Individual participant data (IPD) meta-analysis of randomised trials is a crucial method for detecting and investigating effect modifications in medical research. However, few studies have explored scenarios involving systematically missing data on discrete effect modifiers (EMs) in IPD meta-analyses with a limited number of trials. This simulation study examines the impact of systematic missing values in IPD meta-analysis using a two-stage imputation method. We simulated IPD meta-analyses of randomised trials with multiple studies that had systematically missing data on the EM. A multivariable Weibull survival model was specified to assess beneficial (Hazard Ratio (HR)<math><mo>=</mo></math>0.8), null (HR<math><mo>=</mo></math>1.0), and harmful (HR<math><mo>=</mo></math>1.2) treatment effects for low, medium, and high levels of an EM, respectively. Bias and coverage were evaluated using Monte-Carlo simulations. The absolute bias for common and heterogeneous effect IPD meta-analyses was less than 0.016 and 0.007, respectively, with coverage close to its nominal value across all EM levels. An uncongenial imputation model resulted in larger bias, even when the proportion of studies with systematically missing data on the EM was small. Overall, the proposed two-stage imputation approach provided unbiased estimates with improved precision. The assumptions and limitations of this approach are discussed.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251348800"},"PeriodicalIF":1.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple imputation for systematically missing effect modifiers in individual participant data meta-analysis.\",\"authors\":\"Robert Thiesmeier, Scott M Hofer, Nicola Orsini\",\"doi\":\"10.1177/09622802251348800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Individual participant data (IPD) meta-analysis of randomised trials is a crucial method for detecting and investigating effect modifications in medical research. However, few studies have explored scenarios involving systematically missing data on discrete effect modifiers (EMs) in IPD meta-analyses with a limited number of trials. This simulation study examines the impact of systematic missing values in IPD meta-analysis using a two-stage imputation method. We simulated IPD meta-analyses of randomised trials with multiple studies that had systematically missing data on the EM. A multivariable Weibull survival model was specified to assess beneficial (Hazard Ratio (HR)<math><mo>=</mo></math>0.8), null (HR<math><mo>=</mo></math>1.0), and harmful (HR<math><mo>=</mo></math>1.2) treatment effects for low, medium, and high levels of an EM, respectively. Bias and coverage were evaluated using Monte-Carlo simulations. The absolute bias for common and heterogeneous effect IPD meta-analyses was less than 0.016 and 0.007, respectively, with coverage close to its nominal value across all EM levels. An uncongenial imputation model resulted in larger bias, even when the proportion of studies with systematically missing data on the EM was small. Overall, the proposed two-stage imputation approach provided unbiased estimates with improved precision. The assumptions and limitations of this approach are discussed.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802251348800\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802251348800\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251348800","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

随机试验的个体参与者数据(IPD)荟萃分析是检测和调查医学研究中效果变化的重要方法。然而,很少有研究在IPD荟萃分析中系统地缺失离散效应调节剂(EMs)的数据,且试验数量有限。本模拟研究使用两阶段的imputation方法检验IPD meta分析中系统缺失值的影响。我们模拟了随机试验的IPD荟萃分析,其中有多个研究系统地缺少EM数据。指定了一个多变量威布尔生存模型,分别评估低、中、高水平EM的有益(风险比(HR)=0.8)、无效(HR=1.0)和有害(HR=1.2)治疗效果。使用蒙特卡罗模拟评估偏差和覆盖率。共同效应和异质性效应IPD荟萃分析的绝对偏倚分别小于0.016和0.007,覆盖范围接近所有EM水平的标称值。即使在系统性缺失EM数据的研究比例很小的情况下,不一致的归因模型也会导致更大的偏差。总体而言,所提出的两阶段估算方法提供了精度更高的无偏估计。讨论了该方法的假设和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple imputation for systematically missing effect modifiers in individual participant data meta-analysis.

Individual participant data (IPD) meta-analysis of randomised trials is a crucial method for detecting and investigating effect modifications in medical research. However, few studies have explored scenarios involving systematically missing data on discrete effect modifiers (EMs) in IPD meta-analyses with a limited number of trials. This simulation study examines the impact of systematic missing values in IPD meta-analysis using a two-stage imputation method. We simulated IPD meta-analyses of randomised trials with multiple studies that had systematically missing data on the EM. A multivariable Weibull survival model was specified to assess beneficial (Hazard Ratio (HR)=0.8), null (HR=1.0), and harmful (HR=1.2) treatment effects for low, medium, and high levels of an EM, respectively. Bias and coverage were evaluated using Monte-Carlo simulations. The absolute bias for common and heterogeneous effect IPD meta-analyses was less than 0.016 and 0.007, respectively, with coverage close to its nominal value across all EM levels. An uncongenial imputation model resulted in larger bias, even when the proportion of studies with systematically missing data on the EM was small. Overall, the proposed two-stage imputation approach provided unbiased estimates with improved precision. The assumptions and limitations of this approach are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信