Mi-Ri Kwon, Sung Hun Kim, Ga Eun Park, Han Song Mun, Bong Joo Kang, Yun Tae Kim, Inyoung Yoon
{"title":"基于人工智能的乳房x光检查肿瘤大小测量:与病理一致,并与人类读者在多种成像方式下的评估进行比较。","authors":"Mi-Ri Kwon, Sung Hun Kim, Ga Eun Park, Han Song Mun, Bong Joo Kang, Yun Tae Kim, Inyoung Yoon","doi":"10.1007/s11547-025-02033-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the agreement between artificial intelligence (AI)-based tumor size measurements of breast cancer and the final pathology and compare these results with those of other imaging modalities.</p><p><strong>Material and methods: </strong>This retrospective study included 925 women (mean age, 55.3 years ± 11.6) with 936 breast cancers, who underwent digital mammography, breast ultrasound, and magnetic resonance imaging before breast cancer surgery. AI-based tumor size measurement was performed on post-processed mammographic images, outlining areas with AI abnormality scores of 10, 50, and 90%. Absolute agreement between AI-based tumor sizes, image modalities, and histopathology was assessed using intraclass correlation coefficient (ICC) analysis. Concordant and discordant cases between AI measurements and histopathologic examinations were compared.</p><p><strong>Results: </strong>Tumor size with an abnormality score of 50% showed the highest agreement with histopathologic examination (ICC = 0.54, 95% confidential interval [CI]: 0.49-0.59), showing comparable agreement with mammography (ICC = 0.54, 95% CI: 0.48-0.60, p = 0.40). For ductal carcinoma in situ and human epidermal growth factor receptor 2-positive cancers, AI revealed a higher agreement than that of mammography (ICC = 0.76, 95% CI: 0.67-0.84 and ICC = 0.73, 95% CI: 0.52-0.85). Overall, 52.0% (487/936) of cases were discordant, with these cases more commonly observed in younger patients with dense breasts, multifocal malignancies, lower abnormality scores, and different imaging characteristics.</p><p><strong>Conclusion: </strong>AI-based tumor size measurements with abnormality scores of 50% showed moderate agreement with histopathology but demonstrated size discordance in more than half of the cases. While comparable to mammography, its limitations emphasize the need for further refinement and research.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based tumor size measurement on mammography: agreement with pathology and comparison with human readers' assessments across multiple imaging modalities.\",\"authors\":\"Mi-Ri Kwon, Sung Hun Kim, Ga Eun Park, Han Song Mun, Bong Joo Kang, Yun Tae Kim, Inyoung Yoon\",\"doi\":\"10.1007/s11547-025-02033-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the agreement between artificial intelligence (AI)-based tumor size measurements of breast cancer and the final pathology and compare these results with those of other imaging modalities.</p><p><strong>Material and methods: </strong>This retrospective study included 925 women (mean age, 55.3 years ± 11.6) with 936 breast cancers, who underwent digital mammography, breast ultrasound, and magnetic resonance imaging before breast cancer surgery. AI-based tumor size measurement was performed on post-processed mammographic images, outlining areas with AI abnormality scores of 10, 50, and 90%. Absolute agreement between AI-based tumor sizes, image modalities, and histopathology was assessed using intraclass correlation coefficient (ICC) analysis. Concordant and discordant cases between AI measurements and histopathologic examinations were compared.</p><p><strong>Results: </strong>Tumor size with an abnormality score of 50% showed the highest agreement with histopathologic examination (ICC = 0.54, 95% confidential interval [CI]: 0.49-0.59), showing comparable agreement with mammography (ICC = 0.54, 95% CI: 0.48-0.60, p = 0.40). For ductal carcinoma in situ and human epidermal growth factor receptor 2-positive cancers, AI revealed a higher agreement than that of mammography (ICC = 0.76, 95% CI: 0.67-0.84 and ICC = 0.73, 95% CI: 0.52-0.85). Overall, 52.0% (487/936) of cases were discordant, with these cases more commonly observed in younger patients with dense breasts, multifocal malignancies, lower abnormality scores, and different imaging characteristics.</p><p><strong>Conclusion: </strong>AI-based tumor size measurements with abnormality scores of 50% showed moderate agreement with histopathology but demonstrated size discordance in more than half of the cases. While comparable to mammography, its limitations emphasize the need for further refinement and research.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-025-02033-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-02033-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Artificial intelligence-based tumor size measurement on mammography: agreement with pathology and comparison with human readers' assessments across multiple imaging modalities.
Purpose: To evaluate the agreement between artificial intelligence (AI)-based tumor size measurements of breast cancer and the final pathology and compare these results with those of other imaging modalities.
Material and methods: This retrospective study included 925 women (mean age, 55.3 years ± 11.6) with 936 breast cancers, who underwent digital mammography, breast ultrasound, and magnetic resonance imaging before breast cancer surgery. AI-based tumor size measurement was performed on post-processed mammographic images, outlining areas with AI abnormality scores of 10, 50, and 90%. Absolute agreement between AI-based tumor sizes, image modalities, and histopathology was assessed using intraclass correlation coefficient (ICC) analysis. Concordant and discordant cases between AI measurements and histopathologic examinations were compared.
Results: Tumor size with an abnormality score of 50% showed the highest agreement with histopathologic examination (ICC = 0.54, 95% confidential interval [CI]: 0.49-0.59), showing comparable agreement with mammography (ICC = 0.54, 95% CI: 0.48-0.60, p = 0.40). For ductal carcinoma in situ and human epidermal growth factor receptor 2-positive cancers, AI revealed a higher agreement than that of mammography (ICC = 0.76, 95% CI: 0.67-0.84 and ICC = 0.73, 95% CI: 0.52-0.85). Overall, 52.0% (487/936) of cases were discordant, with these cases more commonly observed in younger patients with dense breasts, multifocal malignancies, lower abnormality scores, and different imaging characteristics.
Conclusion: AI-based tumor size measurements with abnormality scores of 50% showed moderate agreement with histopathology but demonstrated size discordance in more than half of the cases. While comparable to mammography, its limitations emphasize the need for further refinement and research.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.