大豆FW-RIL群体种子宽度条件QTL/QTN定位及候选基因挖掘。

IF 2.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xu Wang, Bo Hu, Hong Xue, Ming Yuan, Quanzhong Dong, Wen-Xia Li, Zhimin Dong, Hailong Ning
{"title":"大豆FW-RIL群体种子宽度条件QTL/QTN定位及候选基因挖掘。","authors":"Xu Wang, Bo Hu, Hong Xue, Ming Yuan, Quanzhong Dong, Wen-Xia Li, Zhimin Dong, Hailong Ning","doi":"10.1007/s00438-025-02271-5","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean seed width (SW) is a pivotal quantitative trait influencing both seed yield and appearance quality, controlled by a complex interplay of multiple genes and environmental factors. This research was undertaken to identify significant genetic loci and candidate genes associated with SW, thereby facilitating the development of molecular markers crucial for advancing soybean breeding programs. In this study, a four-way recombinant inbred line (FW-RIL) population, derived from the cross of (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19),<sup>1</sup> alongside a diverse germplasm population (GP) comprising 455 soybean cultivars, served as the genetic material. Phenotypic measurements of SW were meticulously recorded for the FW-RILs across three distinct environments and for the GP across four environments. Subsequent linkage analysis in the FW-RIL population and genome-wide association studies (GWAS) in the GP were conducted to map the quantitative trait loci (QTLs) and quantitative trait nucleotides (QTNs) underlying SW. These analyses successfully identified a total of 51 QTLs and 103 QTNs associated with SW. Furthermore, detailed investigation of seven QTNs attenuation regions located within the consistently detected qSW-7-2 region was performed to predict potential candidate genes. This process led to the selection of three promising genes; Glyma.07G004700, Glyma.07G006300, and Glyma.07G013700 based on the integrated evidence from sequence variation analysis among parental lines, comprehensive haplotype analysis within the mapping populations, and relevant functional annotation. The comprehensive identification of these QTLs, QTNs, and particularly the three prioritized candidate genes, offers significant insights into the genetic control of soybean seed width and provides a robust foundation for the development of effective molecular markers to enhance the efficiency of marker-assisted selection for improved soybean yield.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"60"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional QTL/QTN mapping for seed width and mining candidate genes based on soybean FW-RIL population.\",\"authors\":\"Xu Wang, Bo Hu, Hong Xue, Ming Yuan, Quanzhong Dong, Wen-Xia Li, Zhimin Dong, Hailong Ning\",\"doi\":\"10.1007/s00438-025-02271-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soybean seed width (SW) is a pivotal quantitative trait influencing both seed yield and appearance quality, controlled by a complex interplay of multiple genes and environmental factors. This research was undertaken to identify significant genetic loci and candidate genes associated with SW, thereby facilitating the development of molecular markers crucial for advancing soybean breeding programs. In this study, a four-way recombinant inbred line (FW-RIL) population, derived from the cross of (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19),<sup>1</sup> alongside a diverse germplasm population (GP) comprising 455 soybean cultivars, served as the genetic material. Phenotypic measurements of SW were meticulously recorded for the FW-RILs across three distinct environments and for the GP across four environments. Subsequent linkage analysis in the FW-RIL population and genome-wide association studies (GWAS) in the GP were conducted to map the quantitative trait loci (QTLs) and quantitative trait nucleotides (QTNs) underlying SW. These analyses successfully identified a total of 51 QTLs and 103 QTNs associated with SW. Furthermore, detailed investigation of seven QTNs attenuation regions located within the consistently detected qSW-7-2 region was performed to predict potential candidate genes. This process led to the selection of three promising genes; Glyma.07G004700, Glyma.07G006300, and Glyma.07G013700 based on the integrated evidence from sequence variation analysis among parental lines, comprehensive haplotype analysis within the mapping populations, and relevant functional annotation. The comprehensive identification of these QTLs, QTNs, and particularly the three prioritized candidate genes, offers significant insights into the genetic control of soybean seed width and provides a robust foundation for the development of effective molecular markers to enhance the efficiency of marker-assisted selection for improved soybean yield.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":\"300 1\",\"pages\":\"60\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-025-02271-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02271-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大豆种子宽度是影响大豆种子产量和外观品质的关键数量性状,受多种基因和环境因素的复杂相互作用控制。本研究的目的是鉴定与大豆赤霉病相关的重要遗传位点和候选基因,从而促进对大豆育种计划至关重要的分子标记的开发。本研究以(垦丰14 ×垦丰15)×(海农48 ×垦丰19)1杂交而成的四重重组自交系(fwril)群体与455个大豆品种组成的多元种质群体(GP)为遗传材料。在三种不同的环境中仔细记录了fw - ril和GP在四种环境中的表型测量。随后进行了FW-RIL群体的连锁分析和GP的全基因组关联研究(GWAS),以绘制SW的数量性状位点(qtl)和数量性状核苷酸(qtn)。这些分析成功地鉴定出与SW相关的51个qtl和103个qtn。此外,研究人员还对位于一致检测到的qSW-7-2区域内的7个qtn衰减区域进行了详细调查,以预测潜在的候选基因。这一过程导致了三个有希望的基因的选择;基于亲本间序列变异分析、定位群体内综合单倍型分析和相关功能注释的综合证据,对Glyma.07G004700、Glyma.07G006300和Glyma.07G013700进行了鉴定。这些qtl、QTNs,特别是3个优先候选基因的全面鉴定,为大豆种子宽度的遗传控制提供了重要的见解,并为开发有效的分子标记,提高标记辅助选择的效率,提高大豆产量提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional QTL/QTN mapping for seed width and mining candidate genes based on soybean FW-RIL population.

Soybean seed width (SW) is a pivotal quantitative trait influencing both seed yield and appearance quality, controlled by a complex interplay of multiple genes and environmental factors. This research was undertaken to identify significant genetic loci and candidate genes associated with SW, thereby facilitating the development of molecular markers crucial for advancing soybean breeding programs. In this study, a four-way recombinant inbred line (FW-RIL) population, derived from the cross of (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19),1 alongside a diverse germplasm population (GP) comprising 455 soybean cultivars, served as the genetic material. Phenotypic measurements of SW were meticulously recorded for the FW-RILs across three distinct environments and for the GP across four environments. Subsequent linkage analysis in the FW-RIL population and genome-wide association studies (GWAS) in the GP were conducted to map the quantitative trait loci (QTLs) and quantitative trait nucleotides (QTNs) underlying SW. These analyses successfully identified a total of 51 QTLs and 103 QTNs associated with SW. Furthermore, detailed investigation of seven QTNs attenuation regions located within the consistently detected qSW-7-2 region was performed to predict potential candidate genes. This process led to the selection of three promising genes; Glyma.07G004700, Glyma.07G006300, and Glyma.07G013700 based on the integrated evidence from sequence variation analysis among parental lines, comprehensive haplotype analysis within the mapping populations, and relevant functional annotation. The comprehensive identification of these QTLs, QTNs, and particularly the three prioritized candidate genes, offers significant insights into the genetic control of soybean seed width and provides a robust foundation for the development of effective molecular markers to enhance the efficiency of marker-assisted selection for improved soybean yield.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信