Emma Gabriela Antonio-Marcos, Hugo Joel Carrillo Escalante, Liliana Hernández-Vázquez, Gerardo Alfonso Castillo Gamboa, José Manuel Cervantes Uc, Jesús Alejandro Claudio Rizo, Nayeli Rodríguez-Fuentes
{"title":"增强明胶水凝胶:c -藻蓝蛋白和雀花粘液对其理化和生物相容性的协同作用。","authors":"Emma Gabriela Antonio-Marcos, Hugo Joel Carrillo Escalante, Liliana Hernández-Vázquez, Gerardo Alfonso Castillo Gamboa, José Manuel Cervantes Uc, Jesús Alejandro Claudio Rizo, Nayeli Rodríguez-Fuentes","doi":"10.1177/08853282251355114","DOIUrl":null,"url":null,"abstract":"<p><p>Healing persistent wounds is a current challenge for healthcare systems. Addressing this type of problem requires new and improved materials that activate regenerative processes without side effects. In this sense, in this study, C-phycocyanin (CPC), a bioactive pigment obtained from <i>Arthrospira platensis</i>, and nopal mucilage (MUC), a traditional Mexican element of ancestral medicine, were incorporated into gelatin (GEL)-based hydrogels and chemically crosslinked. These materials, referred to as HGEL-CPC-MUC, were prepared with varying concentrations of CPC-MUC (0-1 μg/μL of hydrogel), and their structural, physicochemical, rheological and <i>in</i> <i>vitro</i> biocompatibility properties were systematically evaluated. The main findings revealed that the incorporation of CPC-MUC into GEL-based hydrogels, significantly improves their physicochemical, mechanical and biological properties. These hydrogels exhibited a chemical crosslinking, achieving 93% crosslinking efficiency, high swelling behavior (∼1250%), rough porous surfaces, sustained degradation at physiological pH, and high thermal stability. Their rheological behavior showed an improvement in G' (226%) under thermal stress (40 °C), along with high damping capacity under constant load with the addition of CPC-MUC. Notably, the presence of CPC-MUC imparted a hemoprotective effect, with hemolysis percentages decreasing proportionally to the CPC-MUC content and none of the hydrogels interfered with coagulation pathways. Furthermore, all hydrogels demonstrated excellent <i>in</i> <i>vitro</i> biocompatibility with dermal fibroblasts, showing no cytotoxic effects. These features become important in the context of a moist and refractory wounds such as foot ulcers and extensive burns, were moisture control, exceptional hemocompatibility and support for dermal fibroblasts viability are required, as well as the porous structure for nutrients and waste exchange. HGEL-CPC-MUC hydrogels represent a highly promising biocompatible and multifunctional scaffold for advanced wound care and regenerative medicine applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251355114"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing gelatin hydrogels: Synergistic effects of C-phycocyanin and nopal mucilage on physicochemical and biocompatibility properties.\",\"authors\":\"Emma Gabriela Antonio-Marcos, Hugo Joel Carrillo Escalante, Liliana Hernández-Vázquez, Gerardo Alfonso Castillo Gamboa, José Manuel Cervantes Uc, Jesús Alejandro Claudio Rizo, Nayeli Rodríguez-Fuentes\",\"doi\":\"10.1177/08853282251355114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Healing persistent wounds is a current challenge for healthcare systems. Addressing this type of problem requires new and improved materials that activate regenerative processes without side effects. In this sense, in this study, C-phycocyanin (CPC), a bioactive pigment obtained from <i>Arthrospira platensis</i>, and nopal mucilage (MUC), a traditional Mexican element of ancestral medicine, were incorporated into gelatin (GEL)-based hydrogels and chemically crosslinked. These materials, referred to as HGEL-CPC-MUC, were prepared with varying concentrations of CPC-MUC (0-1 μg/μL of hydrogel), and their structural, physicochemical, rheological and <i>in</i> <i>vitro</i> biocompatibility properties were systematically evaluated. The main findings revealed that the incorporation of CPC-MUC into GEL-based hydrogels, significantly improves their physicochemical, mechanical and biological properties. These hydrogels exhibited a chemical crosslinking, achieving 93% crosslinking efficiency, high swelling behavior (∼1250%), rough porous surfaces, sustained degradation at physiological pH, and high thermal stability. Their rheological behavior showed an improvement in G' (226%) under thermal stress (40 °C), along with high damping capacity under constant load with the addition of CPC-MUC. Notably, the presence of CPC-MUC imparted a hemoprotective effect, with hemolysis percentages decreasing proportionally to the CPC-MUC content and none of the hydrogels interfered with coagulation pathways. Furthermore, all hydrogels demonstrated excellent <i>in</i> <i>vitro</i> biocompatibility with dermal fibroblasts, showing no cytotoxic effects. These features become important in the context of a moist and refractory wounds such as foot ulcers and extensive burns, were moisture control, exceptional hemocompatibility and support for dermal fibroblasts viability are required, as well as the porous structure for nutrients and waste exchange. HGEL-CPC-MUC hydrogels represent a highly promising biocompatible and multifunctional scaffold for advanced wound care and regenerative medicine applications.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251355114\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251355114\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251355114","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhancing gelatin hydrogels: Synergistic effects of C-phycocyanin and nopal mucilage on physicochemical and biocompatibility properties.
Healing persistent wounds is a current challenge for healthcare systems. Addressing this type of problem requires new and improved materials that activate regenerative processes without side effects. In this sense, in this study, C-phycocyanin (CPC), a bioactive pigment obtained from Arthrospira platensis, and nopal mucilage (MUC), a traditional Mexican element of ancestral medicine, were incorporated into gelatin (GEL)-based hydrogels and chemically crosslinked. These materials, referred to as HGEL-CPC-MUC, were prepared with varying concentrations of CPC-MUC (0-1 μg/μL of hydrogel), and their structural, physicochemical, rheological and invitro biocompatibility properties were systematically evaluated. The main findings revealed that the incorporation of CPC-MUC into GEL-based hydrogels, significantly improves their physicochemical, mechanical and biological properties. These hydrogels exhibited a chemical crosslinking, achieving 93% crosslinking efficiency, high swelling behavior (∼1250%), rough porous surfaces, sustained degradation at physiological pH, and high thermal stability. Their rheological behavior showed an improvement in G' (226%) under thermal stress (40 °C), along with high damping capacity under constant load with the addition of CPC-MUC. Notably, the presence of CPC-MUC imparted a hemoprotective effect, with hemolysis percentages decreasing proportionally to the CPC-MUC content and none of the hydrogels interfered with coagulation pathways. Furthermore, all hydrogels demonstrated excellent invitro biocompatibility with dermal fibroblasts, showing no cytotoxic effects. These features become important in the context of a moist and refractory wounds such as foot ulcers and extensive burns, were moisture control, exceptional hemocompatibility and support for dermal fibroblasts viability are required, as well as the porous structure for nutrients and waste exchange. HGEL-CPC-MUC hydrogels represent a highly promising biocompatible and multifunctional scaffold for advanced wound care and regenerative medicine applications.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.