释放工程微生物在免疫毒素癌症治疗中的潜力。

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-06-05 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1603671
Quan Wang, Rui Cao, Yuxing Xie, Zhuoyi Zhang, Xianguo Li, Yan Zhang, Haolin Luo, Hui Yao, Ping Xue, Shuai Ni
{"title":"释放工程微生物在免疫毒素癌症治疗中的潜力。","authors":"Quan Wang, Rui Cao, Yuxing Xie, Zhuoyi Zhang, Xianguo Li, Yan Zhang, Haolin Luo, Hui Yao, Ping Xue, Shuai Ni","doi":"10.3389/fmicb.2025.1603671","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotoxins (ITs), as targeted cancer therapies, confront limitations including off-target effects, immunogenicity, and inadequate tumor penetration, hindering clinical translation. Advances in tumor microenvironment (TME) understanding and genetic engineering have enabled engineered microorganisms such as attenuated <i>Salmonella</i>, <i>E. coli</i> Nissle 1917, and modified eukaryotic platforms (e.g., yeast, microalgae) to colonize tumors and act as efficient hosts for IT production. By integrating ITs into these microbes and employing precise circuits (e.g., phage lysis systems, signal peptide fusions), controlled secretion of recombinant immunotoxins (RITs) can be achieved. Balanced-lethal systems further enhance plasmid stability for sustained therapeutic delivery. This review highlights strategies leveraging engineered microbes to amplify IT efficacy, exemplified by preclinical successes like <i>Salmonella</i>-delivered TGFα-PE38 and <i>E. coli</i>-expressed anti-PD-L1-PE38. However, challenges persist, including dynamic TME interactions, systemic infection risks, manufacturing complexities and regulatory uncertainties demand resolution. By synergizing microbial targeting with RIT, this approach offers transformative potential for cancer therapy, yet requires multidisciplinary innovation to address technical, safety, and regulatory barriers for clinical adoption.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1603671"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177715/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unlocking the potential of engineered microbes in immunotoxin-based cancer therapy.\",\"authors\":\"Quan Wang, Rui Cao, Yuxing Xie, Zhuoyi Zhang, Xianguo Li, Yan Zhang, Haolin Luo, Hui Yao, Ping Xue, Shuai Ni\",\"doi\":\"10.3389/fmicb.2025.1603671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunotoxins (ITs), as targeted cancer therapies, confront limitations including off-target effects, immunogenicity, and inadequate tumor penetration, hindering clinical translation. Advances in tumor microenvironment (TME) understanding and genetic engineering have enabled engineered microorganisms such as attenuated <i>Salmonella</i>, <i>E. coli</i> Nissle 1917, and modified eukaryotic platforms (e.g., yeast, microalgae) to colonize tumors and act as efficient hosts for IT production. By integrating ITs into these microbes and employing precise circuits (e.g., phage lysis systems, signal peptide fusions), controlled secretion of recombinant immunotoxins (RITs) can be achieved. Balanced-lethal systems further enhance plasmid stability for sustained therapeutic delivery. This review highlights strategies leveraging engineered microbes to amplify IT efficacy, exemplified by preclinical successes like <i>Salmonella</i>-delivered TGFα-PE38 and <i>E. coli</i>-expressed anti-PD-L1-PE38. However, challenges persist, including dynamic TME interactions, systemic infection risks, manufacturing complexities and regulatory uncertainties demand resolution. By synergizing microbial targeting with RIT, this approach offers transformative potential for cancer therapy, yet requires multidisciplinary innovation to address technical, safety, and regulatory barriers for clinical adoption.</p>\",\"PeriodicalId\":12466,\"journal\":{\"name\":\"Frontiers in Microbiology\",\"volume\":\"16 \",\"pages\":\"1603671\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177715/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmicb.2025.1603671\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1603671","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

免疫毒素(immunotoxin, ITs)作为一种靶向治疗癌症的药物,面临着脱靶效应、免疫原性、肿瘤穿透性不足等限制,阻碍了临床转化。肿瘤微环境(TME)的理解和基因工程的进步使得工程微生物如减毒沙门氏菌、大肠杆菌尼塞尔1917和修饰的真核生物平台(如酵母、微藻)能够定植肿瘤并作为IT生产的有效宿主。通过将ITs整合到这些微生物中并采用精确的电路(例如,噬菌体裂解系统,信号肽融合),可以实现重组免疫毒素(RITs)的控制分泌。平衡致死系统进一步提高质粒的稳定性,以实现持续的治疗递送。这篇综述强调了利用工程微生物来增强IT功效的策略,例如沙门氏菌递送的TGFα-PE38和大肠杆菌表达的抗pd - l1 - pe38。然而,挑战依然存在,包括动态TME相互作用、系统性感染风险、制造复杂性和监管不确定性,这些都需要解决。通过微生物靶向与RIT的协同作用,这种方法为癌症治疗提供了变革性的潜力,但需要多学科创新来解决临床采用的技术、安全和监管障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking the potential of engineered microbes in immunotoxin-based cancer therapy.

Immunotoxins (ITs), as targeted cancer therapies, confront limitations including off-target effects, immunogenicity, and inadequate tumor penetration, hindering clinical translation. Advances in tumor microenvironment (TME) understanding and genetic engineering have enabled engineered microorganisms such as attenuated Salmonella, E. coli Nissle 1917, and modified eukaryotic platforms (e.g., yeast, microalgae) to colonize tumors and act as efficient hosts for IT production. By integrating ITs into these microbes and employing precise circuits (e.g., phage lysis systems, signal peptide fusions), controlled secretion of recombinant immunotoxins (RITs) can be achieved. Balanced-lethal systems further enhance plasmid stability for sustained therapeutic delivery. This review highlights strategies leveraging engineered microbes to amplify IT efficacy, exemplified by preclinical successes like Salmonella-delivered TGFα-PE38 and E. coli-expressed anti-PD-L1-PE38. However, challenges persist, including dynamic TME interactions, systemic infection risks, manufacturing complexities and regulatory uncertainties demand resolution. By synergizing microbial targeting with RIT, this approach offers transformative potential for cancer therapy, yet requires multidisciplinary innovation to address technical, safety, and regulatory barriers for clinical adoption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信