Abir M Shata, Mokhtar Saeed Rejili, Manal M El-Naggar, Samy A El-Asser, Ahmed A Saleh, Elsayed E Hafez, Faouzi Haouala, Amany S Youssef
{"title":"探讨海洋白多黄链霉菌生物活性化合物抗乳腺癌的作用机制和方式。","authors":"Abir M Shata, Mokhtar Saeed Rejili, Manal M El-Naggar, Samy A El-Asser, Ahmed A Saleh, Elsayed E Hafez, Faouzi Haouala, Amany S Youssef","doi":"10.1186/s12896-025-00991-5","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains one of the most lethal diseases for women worldwide. Marine populations are considered a vast reservoir for novel bioactive metabolites, particularly marine Actinomycetes, which are known to produce various bioactive compounds with antitumour, antibacterial, and antifungal properties. A promising new marine strain was isolated and identified as Streptomyces albidoflavus strain EgyAB2 (16 S rRNA gene sequence accession number ON680945.1). The anticancer activity of the extracted compounds was tested in the MCF7 cell line using a sulforhodamine B (SRB) bioassay, which revealed an IC<sub>50</sub> of 0.36 µg/ml compared to the chemotherapeutic drug 5-fluorouracil (0.35 µg/ml). Additionally, the anticancer activity was confirmed by a dimethyl-thiazol-diphenyl-tetrazolium bromide (MTT) bioassay, which showed an IC<sub>50</sub> of 17.46 µg/ml. The mode of action of the treated breast carcinoma (apoptotic effect) was studied via qRT-PCR, revealing a significant role in anticancer treatment. Although the extracted compounds exhibited high antioxidant activity in the diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay, they presented an IC<sub>50</sub> of 8.92 µg/ml and an inhibition percentage of 56.08%. Chemical characterisation was performed via GC‒MS, 1 H-NMR, and FTIR spectroscopy analyses, revealing the presence of 2-D N-methyl imidazole, 2-nonadecene, 1-D-2-methyl imidazole, and propane dinitrile, all of which exhibit antitumour activity.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"48"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180265/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the mechanisms and mode of action of bioactive compounds from marine Streptomyces albidoflavus against breast carcinoma cells.\",\"authors\":\"Abir M Shata, Mokhtar Saeed Rejili, Manal M El-Naggar, Samy A El-Asser, Ahmed A Saleh, Elsayed E Hafez, Faouzi Haouala, Amany S Youssef\",\"doi\":\"10.1186/s12896-025-00991-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer remains one of the most lethal diseases for women worldwide. Marine populations are considered a vast reservoir for novel bioactive metabolites, particularly marine Actinomycetes, which are known to produce various bioactive compounds with antitumour, antibacterial, and antifungal properties. A promising new marine strain was isolated and identified as Streptomyces albidoflavus strain EgyAB2 (16 S rRNA gene sequence accession number ON680945.1). The anticancer activity of the extracted compounds was tested in the MCF7 cell line using a sulforhodamine B (SRB) bioassay, which revealed an IC<sub>50</sub> of 0.36 µg/ml compared to the chemotherapeutic drug 5-fluorouracil (0.35 µg/ml). Additionally, the anticancer activity was confirmed by a dimethyl-thiazol-diphenyl-tetrazolium bromide (MTT) bioassay, which showed an IC<sub>50</sub> of 17.46 µg/ml. The mode of action of the treated breast carcinoma (apoptotic effect) was studied via qRT-PCR, revealing a significant role in anticancer treatment. Although the extracted compounds exhibited high antioxidant activity in the diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay, they presented an IC<sub>50</sub> of 8.92 µg/ml and an inhibition percentage of 56.08%. Chemical characterisation was performed via GC‒MS, 1 H-NMR, and FTIR spectroscopy analyses, revealing the presence of 2-D N-methyl imidazole, 2-nonadecene, 1-D-2-methyl imidazole, and propane dinitrile, all of which exhibit antitumour activity.</p>\",\"PeriodicalId\":8905,\"journal\":{\"name\":\"BMC Biotechnology\",\"volume\":\"25 1\",\"pages\":\"48\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12896-025-00991-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-025-00991-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exploring the mechanisms and mode of action of bioactive compounds from marine Streptomyces albidoflavus against breast carcinoma cells.
Breast cancer remains one of the most lethal diseases for women worldwide. Marine populations are considered a vast reservoir for novel bioactive metabolites, particularly marine Actinomycetes, which are known to produce various bioactive compounds with antitumour, antibacterial, and antifungal properties. A promising new marine strain was isolated and identified as Streptomyces albidoflavus strain EgyAB2 (16 S rRNA gene sequence accession number ON680945.1). The anticancer activity of the extracted compounds was tested in the MCF7 cell line using a sulforhodamine B (SRB) bioassay, which revealed an IC50 of 0.36 µg/ml compared to the chemotherapeutic drug 5-fluorouracil (0.35 µg/ml). Additionally, the anticancer activity was confirmed by a dimethyl-thiazol-diphenyl-tetrazolium bromide (MTT) bioassay, which showed an IC50 of 17.46 µg/ml. The mode of action of the treated breast carcinoma (apoptotic effect) was studied via qRT-PCR, revealing a significant role in anticancer treatment. Although the extracted compounds exhibited high antioxidant activity in the diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay, they presented an IC50 of 8.92 µg/ml and an inhibition percentage of 56.08%. Chemical characterisation was performed via GC‒MS, 1 H-NMR, and FTIR spectroscopy analyses, revealing the presence of 2-D N-methyl imidazole, 2-nonadecene, 1-D-2-methyl imidazole, and propane dinitrile, all of which exhibit antitumour activity.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.