{"title":"多组学方法:改变天然产物分离的景观。","authors":"Soumitra Sahana, Jyotirmay Sarkar, Sourav Mandal, Indranil Chatterjee, Susmita Dhar, Samaresh Datta, Sumanta Mondal","doi":"10.1007/s10142-025-01645-7","DOIUrl":null,"url":null,"abstract":"<p><p>The field of natural product (NPs) discovery has significantly evolved with the advent of multi-omics approaches, encompassing genomics, transcriptomics, proteomics, and metabolomics. This review highlighting targeted isolation strategies and the comprehensive applications of omics in investigating natural products. Omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have emerged as powerful tools that revolutionize the traditional methods of natural product discovery. This review delves into the integration of multi-omics technology in the isolation and discovery of natural product. Omics applications in natural product investigation have revolutionized the field by enabling high-throughput screening, rapid identification of novel compounds, and understanding the complex interactions within biological systems. For instance, metabolomics gives insights into the metabolic profiles of organisms under different conditions, aiding in the discovery of unique NPs with potential therapeutic applications. Genomics has facilitated the mining of microbial genomes for biosynthetic gene clusters, leading to the discovery of new antibiotics and carcinopreventive agents. Transcriptomics and proteomics provide insights into gene expression and protein synthesis, revealing the dynamics of NPs biosynthesis under various conditions. Despite these limitations, the future prospects of multi-omics in natural product discovery are promising. Advances in omics technologies, coupled with machine learning and artificial intelligence, are expected to enhance data integration and predictive modeling, accelerating the discovery and development of innovative drugs. Furthermore, the continuous improvement in analytical techniques and the establishment of comprehensive databases will facilitate the identification and characterization of NPs, ultimately contributing to the development of new therapeutic agents. Collaborative efforts across disciplines and the integration of environmental and ecological data will further enhance our understanding of NP biosynthesis and lead to more effective and sustainable drug discovery strategies.</p>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":"132"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics approaches: transforming the landscape of natural product isolation.\",\"authors\":\"Soumitra Sahana, Jyotirmay Sarkar, Sourav Mandal, Indranil Chatterjee, Susmita Dhar, Samaresh Datta, Sumanta Mondal\",\"doi\":\"10.1007/s10142-025-01645-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field of natural product (NPs) discovery has significantly evolved with the advent of multi-omics approaches, encompassing genomics, transcriptomics, proteomics, and metabolomics. This review highlighting targeted isolation strategies and the comprehensive applications of omics in investigating natural products. Omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have emerged as powerful tools that revolutionize the traditional methods of natural product discovery. This review delves into the integration of multi-omics technology in the isolation and discovery of natural product. Omics applications in natural product investigation have revolutionized the field by enabling high-throughput screening, rapid identification of novel compounds, and understanding the complex interactions within biological systems. For instance, metabolomics gives insights into the metabolic profiles of organisms under different conditions, aiding in the discovery of unique NPs with potential therapeutic applications. Genomics has facilitated the mining of microbial genomes for biosynthetic gene clusters, leading to the discovery of new antibiotics and carcinopreventive agents. Transcriptomics and proteomics provide insights into gene expression and protein synthesis, revealing the dynamics of NPs biosynthesis under various conditions. Despite these limitations, the future prospects of multi-omics in natural product discovery are promising. Advances in omics technologies, coupled with machine learning and artificial intelligence, are expected to enhance data integration and predictive modeling, accelerating the discovery and development of innovative drugs. Furthermore, the continuous improvement in analytical techniques and the establishment of comprehensive databases will facilitate the identification and characterization of NPs, ultimately contributing to the development of new therapeutic agents. Collaborative efforts across disciplines and the integration of environmental and ecological data will further enhance our understanding of NP biosynthesis and lead to more effective and sustainable drug discovery strategies.</p>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"25 1\",\"pages\":\"132\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10142-025-01645-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10142-025-01645-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Multi-omics approaches: transforming the landscape of natural product isolation.
The field of natural product (NPs) discovery has significantly evolved with the advent of multi-omics approaches, encompassing genomics, transcriptomics, proteomics, and metabolomics. This review highlighting targeted isolation strategies and the comprehensive applications of omics in investigating natural products. Omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have emerged as powerful tools that revolutionize the traditional methods of natural product discovery. This review delves into the integration of multi-omics technology in the isolation and discovery of natural product. Omics applications in natural product investigation have revolutionized the field by enabling high-throughput screening, rapid identification of novel compounds, and understanding the complex interactions within biological systems. For instance, metabolomics gives insights into the metabolic profiles of organisms under different conditions, aiding in the discovery of unique NPs with potential therapeutic applications. Genomics has facilitated the mining of microbial genomes for biosynthetic gene clusters, leading to the discovery of new antibiotics and carcinopreventive agents. Transcriptomics and proteomics provide insights into gene expression and protein synthesis, revealing the dynamics of NPs biosynthesis under various conditions. Despite these limitations, the future prospects of multi-omics in natural product discovery are promising. Advances in omics technologies, coupled with machine learning and artificial intelligence, are expected to enhance data integration and predictive modeling, accelerating the discovery and development of innovative drugs. Furthermore, the continuous improvement in analytical techniques and the establishment of comprehensive databases will facilitate the identification and characterization of NPs, ultimately contributing to the development of new therapeutic agents. Collaborative efforts across disciplines and the integration of environmental and ecological data will further enhance our understanding of NP biosynthesis and lead to more effective and sustainable drug discovery strategies.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?