扭曲CuInP2S6双分子层的铁电畴及其演化动力学。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dongyu Bai, Junxian Liu, Yihan Nie, Yuantong Gu, Dongchen Qi, Arkady Krasheninnikov, Liangzhi Kou
{"title":"扭曲CuInP2S6双分子层的铁电畴及其演化动力学。","authors":"Dongyu Bai, Junxian Liu, Yihan Nie, Yuantong Gu, Dongchen Qi, Arkady Krasheninnikov, Liangzhi Kou","doi":"10.1002/smtd.202500683","DOIUrl":null,"url":null,"abstract":"<p><p>Polar domains and their manipulation-particularly the creation and dynamic control-have garnered significant attention, owing to their rich physics and promising applications in digital memory devices. In this work, using density functional theory (DFT) and deep learning molecular dynamics (DLMD) simulations, it is demonstrated that polar domains can be created and manipulated in twisted bilayers of ferroelectric CuInP<sub>2</sub>S<sub>6</sub>, as a result of interfacial ferroelectric (antiferroelectric) coupling in AA (AB) stacked region. Unlike the topological polar vortex and skyrmions observed in superlattices of (PbTiO<sub>3</sub>)<sub>n</sub>/(SrTiO<sub>3</sub>)<sub>n</sub> and sliding bilayers of BN and MoS<sub>2</sub>, the underlying mechanism of polar domain formation in this system arises from stacking-dependent energy barriers for ferroelectric switching and variations in switching speeds under thermal perturbations. Notably, the thermal stability and polarization lifetimes are highly sensitive to twist angles and temperature, and can be further manipulated by external electric fields and strain. Through multi-scale simulations, this study provides a novel approach to exploring how twist angles influence domain evolution and underscores the potential for controlling local polarization in ferroelectric materials via rotational manipulation.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500683"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric Domains and Evolution Dynamics in Twisted CuInP<sub>2</sub>S<sub>6</sub> Bilayers.\",\"authors\":\"Dongyu Bai, Junxian Liu, Yihan Nie, Yuantong Gu, Dongchen Qi, Arkady Krasheninnikov, Liangzhi Kou\",\"doi\":\"10.1002/smtd.202500683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polar domains and their manipulation-particularly the creation and dynamic control-have garnered significant attention, owing to their rich physics and promising applications in digital memory devices. In this work, using density functional theory (DFT) and deep learning molecular dynamics (DLMD) simulations, it is demonstrated that polar domains can be created and manipulated in twisted bilayers of ferroelectric CuInP<sub>2</sub>S<sub>6</sub>, as a result of interfacial ferroelectric (antiferroelectric) coupling in AA (AB) stacked region. Unlike the topological polar vortex and skyrmions observed in superlattices of (PbTiO<sub>3</sub>)<sub>n</sub>/(SrTiO<sub>3</sub>)<sub>n</sub> and sliding bilayers of BN and MoS<sub>2</sub>, the underlying mechanism of polar domain formation in this system arises from stacking-dependent energy barriers for ferroelectric switching and variations in switching speeds under thermal perturbations. Notably, the thermal stability and polarization lifetimes are highly sensitive to twist angles and temperature, and can be further manipulated by external electric fields and strain. Through multi-scale simulations, this study provides a novel approach to exploring how twist angles influence domain evolution and underscores the potential for controlling local polarization in ferroelectric materials via rotational manipulation.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500683\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500683\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500683","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于其丰富的物理性质和在数字存储设备中有前景的应用,极域及其操作-特别是创建和动态控制-已经引起了极大的关注。在这项工作中,利用密度泛函理论(DFT)和深度学习分子动力学(DLMD)模拟,证明了由于AA (AB)堆叠区域的界面铁电(反铁电)耦合,可以在铁电CuInP2S6的扭曲双层中创建和操纵极性畴。与在(PbTiO3)n/(SrTiO3)n超晶格和BN和MoS2滑动双层中观察到的拓扑极性涡旋和skyrmions不同,该体系中极性畴形成的潜在机制源于铁电开关的堆叠依赖的能量势垒和热扰动下开关速度的变化。值得注意的是,热稳定性和极化寿命对扭转角和温度高度敏感,并且可以通过外电场和应变进一步操纵。通过多尺度模拟,本研究提供了一种探索扭转角如何影响畴演化的新方法,并强调了通过旋转操纵控制铁电材料局部极化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferroelectric Domains and Evolution Dynamics in Twisted CuInP2S6 Bilayers.

Polar domains and their manipulation-particularly the creation and dynamic control-have garnered significant attention, owing to their rich physics and promising applications in digital memory devices. In this work, using density functional theory (DFT) and deep learning molecular dynamics (DLMD) simulations, it is demonstrated that polar domains can be created and manipulated in twisted bilayers of ferroelectric CuInP2S6, as a result of interfacial ferroelectric (antiferroelectric) coupling in AA (AB) stacked region. Unlike the topological polar vortex and skyrmions observed in superlattices of (PbTiO3)n/(SrTiO3)n and sliding bilayers of BN and MoS2, the underlying mechanism of polar domain formation in this system arises from stacking-dependent energy barriers for ferroelectric switching and variations in switching speeds under thermal perturbations. Notably, the thermal stability and polarization lifetimes are highly sensitive to twist angles and temperature, and can be further manipulated by external electric fields and strain. Through multi-scale simulations, this study provides a novel approach to exploring how twist angles influence domain evolution and underscores the potential for controlling local polarization in ferroelectric materials via rotational manipulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信