Cu - s共价键使单原子Cu锚定在层状MoS2上,用于高选择性和活性光热催化CO2-H2O转化为乙醇。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yingao Luo, Gaoli Chen, Zhongliao Wang, Sujuan Zhang, Xiuzhen Zheng, Sugang Meng, Shifu Chen
{"title":"Cu - s共价键使单原子Cu锚定在层状MoS2上,用于高选择性和活性光热催化CO2-H2O转化为乙醇。","authors":"Yingao Luo,&nbsp;Gaoli Chen,&nbsp;Zhongliao Wang,&nbsp;Sujuan Zhang,&nbsp;Xiuzhen Zheng,&nbsp;Sugang Meng,&nbsp;Shifu Chen","doi":"10.1002/advs.202504167","DOIUrl":null,"url":null,"abstract":"<p>The catalytic conversion of CO<sub>2</sub> into high-value C<sub>2+</sub> products offers a sustainable path toward carbon neutrality. However, traditional photocatalytic and thermal catalytic methods face challenges like low selectivity and yields. Herein, a novel Cu/MoS<sub>2</sub> photothermal catalyst is synthesized via a two-step hydrothermal method, anchoring single-atom Cu on layered MoS<sub>2</sub> for CO<sub>2</sub> and H<sub>2</sub>O reduction into C<sub>2</sub> products (ethanol, acetylene, and ethane). Under optimal conditions (250 °C, 903 mW·cm<sup>−2</sup>, 320–780 nm), the Cu<sub>5%</sub>–MoS<sub>2</sub> catalyst achieves an ethanol yield of 3.1 mmol·g<sup>−1</sup>·h<sup>−1</sup>, 4.6 times higher than blank MoS<sub>2</sub>. Mechanistic studies reveal that Cu improves light absorption and enhances CO<sub>2</sub> adsorption and *COOH accumulation at MoS<sub>2</sub> edge S sites, as confirmed by density functional theory (DFT) calculations. Mo–Cu dual sites stabilize *CHO intermediates, boosting C<sub>2</sub> product selectivity. The synergistic photothermal effect accelerates charge migration and surface reactions. This work provides cost-effective insights into photothermal CO<sub>2</sub> conversion for fuel production.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 34","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442649/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cu‒S Covalent Bonds Enable the Anchoring of Single-atom Cu on Layered MoS2 for Highly Selective and Active Photothermal Catalytic Conversion of CO2−H2O to Ethanol\",\"authors\":\"Yingao Luo,&nbsp;Gaoli Chen,&nbsp;Zhongliao Wang,&nbsp;Sujuan Zhang,&nbsp;Xiuzhen Zheng,&nbsp;Sugang Meng,&nbsp;Shifu Chen\",\"doi\":\"10.1002/advs.202504167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The catalytic conversion of CO<sub>2</sub> into high-value C<sub>2+</sub> products offers a sustainable path toward carbon neutrality. However, traditional photocatalytic and thermal catalytic methods face challenges like low selectivity and yields. Herein, a novel Cu/MoS<sub>2</sub> photothermal catalyst is synthesized via a two-step hydrothermal method, anchoring single-atom Cu on layered MoS<sub>2</sub> for CO<sub>2</sub> and H<sub>2</sub>O reduction into C<sub>2</sub> products (ethanol, acetylene, and ethane). Under optimal conditions (250 °C, 903 mW·cm<sup>−2</sup>, 320–780 nm), the Cu<sub>5%</sub>–MoS<sub>2</sub> catalyst achieves an ethanol yield of 3.1 mmol·g<sup>−1</sup>·h<sup>−1</sup>, 4.6 times higher than blank MoS<sub>2</sub>. Mechanistic studies reveal that Cu improves light absorption and enhances CO<sub>2</sub> adsorption and *COOH accumulation at MoS<sub>2</sub> edge S sites, as confirmed by density functional theory (DFT) calculations. Mo–Cu dual sites stabilize *CHO intermediates, boosting C<sub>2</sub> product selectivity. The synergistic photothermal effect accelerates charge migration and surface reactions. This work provides cost-effective insights into photothermal CO<sub>2</sub> conversion for fuel production.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 34\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442649/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504167\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504167","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳催化转化为高价值的C2+产品为实现碳中和提供了一条可持续的途径。然而,传统的光催化和热催化方法面临着低选择性和低收率的挑战。本文通过两步水热法合成了一种新型Cu/MoS2光热催化剂,将单原子Cu锚定在层状MoS2上,使CO2和H2O还原为C2产物(乙醇、乙炔和乙烷)。在最佳条件(250℃,903 mW·cm-2, 320 ~ 780 nm)下,Cu5%-MoS2催化剂的乙醇产率为3.1 mmol·g-1·h-1,是空白MoS2催化剂的4.6倍。机制研究表明,Cu改善了MoS2边缘S位点的光吸收,增强了CO2吸附和*COOH积累,这一点得到了密度泛函理论(DFT)的证实。Mo-Cu双位点稳定*CHO中间体,提高C2产物的选择性。协同光热效应加速了电荷迁移和表面反应。这项工作为燃料生产的光热CO2转换提供了具有成本效益的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cu‒S Covalent Bonds Enable the Anchoring of Single-atom Cu on Layered MoS2 for Highly Selective and Active Photothermal Catalytic Conversion of CO2−H2O to Ethanol

Cu‒S Covalent Bonds Enable the Anchoring of Single-atom Cu on Layered MoS2 for Highly Selective and Active Photothermal Catalytic Conversion of CO2−H2O to Ethanol

Cu‒S Covalent Bonds Enable the Anchoring of Single-atom Cu on Layered MoS2 for Highly Selective and Active Photothermal Catalytic Conversion of CO2−H2O to Ethanol

Cu‒S Covalent Bonds Enable the Anchoring of Single-atom Cu on Layered MoS2 for Highly Selective and Active Photothermal Catalytic Conversion of CO2−H2O to Ethanol

Cu‒S Covalent Bonds Enable the Anchoring of Single-atom Cu on Layered MoS2 for Highly Selective and Active Photothermal Catalytic Conversion of CO2−H2O to Ethanol

The catalytic conversion of CO2 into high-value C2+ products offers a sustainable path toward carbon neutrality. However, traditional photocatalytic and thermal catalytic methods face challenges like low selectivity and yields. Herein, a novel Cu/MoS2 photothermal catalyst is synthesized via a two-step hydrothermal method, anchoring single-atom Cu on layered MoS2 for CO2 and H2O reduction into C2 products (ethanol, acetylene, and ethane). Under optimal conditions (250 °C, 903 mW·cm−2, 320–780 nm), the Cu5%–MoS2 catalyst achieves an ethanol yield of 3.1 mmol·g−1·h−1, 4.6 times higher than blank MoS2. Mechanistic studies reveal that Cu improves light absorption and enhances CO2 adsorption and *COOH accumulation at MoS2 edge S sites, as confirmed by density functional theory (DFT) calculations. Mo–Cu dual sites stabilize *CHO intermediates, boosting C2 product selectivity. The synergistic photothermal effect accelerates charge migration and surface reactions. This work provides cost-effective insights into photothermal CO2 conversion for fuel production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信