聚氯乙烯碱脱氢氯化反应中共轭多烯形成的微观结构研究及动力学

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Hossein Abdollahi, Vahid Najafi, Ebrahim Ahmadi
{"title":"聚氯乙烯碱脱氢氯化反应中共轭多烯形成的微观结构研究及动力学","authors":"Hossein Abdollahi,&nbsp;Vahid Najafi,&nbsp;Ebrahim Ahmadi","doi":"10.1002/app.57191","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Polyvinyl chloride (PVC) is a widely used plastic; yet, its recycling remains challenging due to the release of hazardous chlorine compounds during conventional processing. This study investigates the alkaline dehydrochlorination of PVC using KOH and NaOH in a dimethylformamide (DMF)/ethylene glycol (EG) system at 100°C–140°C. The effects of temperature, base concentration, and base type (KOH vs. NaOH) on PVC's microstructure and dehydrochlorination kinetics were examined. Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), and ultraviolet–visible (UV–Vis) analyses, along with color changes, confirmed successful dehydrochlorination. Microstructural analysis revealed progressive decrease in meso–meso (mm, initial: 0.242) and increase in racemic–racemic (rr, initial: 0.314) triad sequences during dehydrochlorination. After 40 min, mm reached 0.163 (KOH) and 0.117 (NaOH); rr increased to 0.379 (KOH) and 0.407 (NaOH). The process occurred with a ratio ~ 9:1 via simultaneous E2 and S<sub>N</sub>2 mechanisms. Kinetic studies using UV–Vis yielded activation energies of 21.6 and 22.03 kcal mol<sup>−1</sup> for polyene and double-bond formation, respectively, with Arrhenius constants of 2.96 × 10<sup>5</sup>and 2.27 × 10<sup>6</sup> Alkaline dehydrochlorination was found to be faster and more direct than thermal dehydrochlorination. A reaction order of 1.0 with respect to KOH concentration supported the E2 mechanism. NaOH was more efficient than KOH in removing HCl from PVC. This work introduces a stereoselective alkaline process, achieving lower activation energies and environmental compatibility compared to thermal methods, offering a sustainable alternative for PVC recycling.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 29","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure Study and Kinetic of Conjugated Polyene Formation in Alkaline Dehydrochlorination of PVC\",\"authors\":\"Hossein Abdollahi,&nbsp;Vahid Najafi,&nbsp;Ebrahim Ahmadi\",\"doi\":\"10.1002/app.57191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Polyvinyl chloride (PVC) is a widely used plastic; yet, its recycling remains challenging due to the release of hazardous chlorine compounds during conventional processing. This study investigates the alkaline dehydrochlorination of PVC using KOH and NaOH in a dimethylformamide (DMF)/ethylene glycol (EG) system at 100°C–140°C. The effects of temperature, base concentration, and base type (KOH vs. NaOH) on PVC's microstructure and dehydrochlorination kinetics were examined. Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), and ultraviolet–visible (UV–Vis) analyses, along with color changes, confirmed successful dehydrochlorination. Microstructural analysis revealed progressive decrease in meso–meso (mm, initial: 0.242) and increase in racemic–racemic (rr, initial: 0.314) triad sequences during dehydrochlorination. After 40 min, mm reached 0.163 (KOH) and 0.117 (NaOH); rr increased to 0.379 (KOH) and 0.407 (NaOH). The process occurred with a ratio ~ 9:1 via simultaneous E2 and S<sub>N</sub>2 mechanisms. Kinetic studies using UV–Vis yielded activation energies of 21.6 and 22.03 kcal mol<sup>−1</sup> for polyene and double-bond formation, respectively, with Arrhenius constants of 2.96 × 10<sup>5</sup>and 2.27 × 10<sup>6</sup> Alkaline dehydrochlorination was found to be faster and more direct than thermal dehydrochlorination. A reaction order of 1.0 with respect to KOH concentration supported the E2 mechanism. NaOH was more efficient than KOH in removing HCl from PVC. This work introduces a stereoselective alkaline process, achieving lower activation energies and environmental compatibility compared to thermal methods, offering a sustainable alternative for PVC recycling.</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 29\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.57191\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.57191","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚氯乙烯(PVC)是一种应用广泛的塑料;然而,由于在常规处理过程中释放有害的氯化合物,其回收仍然具有挑战性。研究了在二甲基甲酰胺(DMF)/乙二醇(EG)体系中用KOH和NaOH在100℃- 140℃条件下对PVC进行碱性脱氢氯化反应。考察了温度、碱浓度和碱类型(KOH和NaOH)对PVC微观结构和脱氯化氢动力学的影响。傅里叶变换红外光谱(FTIR)、核磁共振(NMR)和紫外可见(UV-Vis)分析以及颜色变化证实了脱氢氯化的成功。微观结构分析显示,在脱氯过程中,中位-中位三联位序列逐渐减少(mm,初始值:0.242),外消旋-外消旋三联位序列增加(rr,初始值:0.314)。40 min后,mm分别达到0.163 (KOH)和0.117 (NaOH);rr分别为0.379 (KOH)和0.407 (NaOH)。该过程以9:1的比例通过E2和SN2机制同时发生。紫外-可见动力学研究表明,多烯和双键形成的活化能分别为21.6和22.03 kcal mol−1,Arrhenius常数分别为2.96 × 105和2.27 × 106,碱性脱氢氯化法比热脱氢氯化法更快更直接。与KOH浓度相关的反应级数为1.0支持E2机制。NaOH对PVC中HCl的脱除效果优于KOH。这项工作介绍了一种立体选择性碱性工艺,与热方法相比,实现了更低的活化能和环境相容性,为PVC回收提供了一种可持续的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure Study and Kinetic of Conjugated Polyene Formation in Alkaline Dehydrochlorination of PVC

Polyvinyl chloride (PVC) is a widely used plastic; yet, its recycling remains challenging due to the release of hazardous chlorine compounds during conventional processing. This study investigates the alkaline dehydrochlorination of PVC using KOH and NaOH in a dimethylformamide (DMF)/ethylene glycol (EG) system at 100°C–140°C. The effects of temperature, base concentration, and base type (KOH vs. NaOH) on PVC's microstructure and dehydrochlorination kinetics were examined. Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), and ultraviolet–visible (UV–Vis) analyses, along with color changes, confirmed successful dehydrochlorination. Microstructural analysis revealed progressive decrease in meso–meso (mm, initial: 0.242) and increase in racemic–racemic (rr, initial: 0.314) triad sequences during dehydrochlorination. After 40 min, mm reached 0.163 (KOH) and 0.117 (NaOH); rr increased to 0.379 (KOH) and 0.407 (NaOH). The process occurred with a ratio ~ 9:1 via simultaneous E2 and SN2 mechanisms. Kinetic studies using UV–Vis yielded activation energies of 21.6 and 22.03 kcal mol−1 for polyene and double-bond formation, respectively, with Arrhenius constants of 2.96 × 105and 2.27 × 106 Alkaline dehydrochlorination was found to be faster and more direct than thermal dehydrochlorination. A reaction order of 1.0 with respect to KOH concentration supported the E2 mechanism. NaOH was more efficient than KOH in removing HCl from PVC. This work introduces a stereoselective alkaline process, achieving lower activation energies and environmental compatibility compared to thermal methods, offering a sustainable alternative for PVC recycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信