{"title":"快速学习、工具感知的协作机器人避碰","authors":"Joonho Lee;Yunho Kim;Seokjoon Kim;Quan Nguyen;Youngjin Heo","doi":"10.1109/LRA.2025.3579207","DOIUrl":null,"url":null,"abstract":"Ensuring safe and efficient operation of collaborative robots in human environments is challenging, especially in dynamic settings where both obstacle motion and tasks change over time. Current robot controllers typically assume full visibility and fixed tools, which can lead to collisions or overly conservative behavior. In our work, we introduce a tool-aware collision avoidance system that adjusts in real time to different tool sizes and modes of tool-environment interaction. Using a learned perception model, our system filters out robot and tool components from the point cloud, reasons about occluded area, and predicts collision under partial observability. We then use a control policy trained via constrained reinforcement learning to produce smooth avoidance maneuvers in under 10 milliseconds. In simulated and real-world tests, our approach outperforms traditional approaches (APF, MPPI) in dynamic environments, while maintaining sub-millimeter accuracy. Moreover, our system operates with approximately 60% lower computational cost compared to a state-of-the-art GPU-based planner. Our approach provides modular, efficient, and effective collision avoidance for robots operating in dynamic environments. We integrate our method into a collaborative robot application and demonstrate its practical use for safe and responsive operation.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 8","pages":"7731-7738"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Fast, Tool-Aware Collision Avoidance for Collaborative Robots\",\"authors\":\"Joonho Lee;Yunho Kim;Seokjoon Kim;Quan Nguyen;Youngjin Heo\",\"doi\":\"10.1109/LRA.2025.3579207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring safe and efficient operation of collaborative robots in human environments is challenging, especially in dynamic settings where both obstacle motion and tasks change over time. Current robot controllers typically assume full visibility and fixed tools, which can lead to collisions or overly conservative behavior. In our work, we introduce a tool-aware collision avoidance system that adjusts in real time to different tool sizes and modes of tool-environment interaction. Using a learned perception model, our system filters out robot and tool components from the point cloud, reasons about occluded area, and predicts collision under partial observability. We then use a control policy trained via constrained reinforcement learning to produce smooth avoidance maneuvers in under 10 milliseconds. In simulated and real-world tests, our approach outperforms traditional approaches (APF, MPPI) in dynamic environments, while maintaining sub-millimeter accuracy. Moreover, our system operates with approximately 60% lower computational cost compared to a state-of-the-art GPU-based planner. Our approach provides modular, efficient, and effective collision avoidance for robots operating in dynamic environments. We integrate our method into a collaborative robot application and demonstrate its practical use for safe and responsive operation.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 8\",\"pages\":\"7731-7738\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11031214/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11031214/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Learning Fast, Tool-Aware Collision Avoidance for Collaborative Robots
Ensuring safe and efficient operation of collaborative robots in human environments is challenging, especially in dynamic settings where both obstacle motion and tasks change over time. Current robot controllers typically assume full visibility and fixed tools, which can lead to collisions or overly conservative behavior. In our work, we introduce a tool-aware collision avoidance system that adjusts in real time to different tool sizes and modes of tool-environment interaction. Using a learned perception model, our system filters out robot and tool components from the point cloud, reasons about occluded area, and predicts collision under partial observability. We then use a control policy trained via constrained reinforcement learning to produce smooth avoidance maneuvers in under 10 milliseconds. In simulated and real-world tests, our approach outperforms traditional approaches (APF, MPPI) in dynamic environments, while maintaining sub-millimeter accuracy. Moreover, our system operates with approximately 60% lower computational cost compared to a state-of-the-art GPU-based planner. Our approach provides modular, efficient, and effective collision avoidance for robots operating in dynamic environments. We integrate our method into a collaborative robot application and demonstrate its practical use for safe and responsive operation.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.