拟线性复杂度O(NlogN)代数几何码的编码

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Songsong Li;Shu Liu;Liming Ma;Yunqi Wan;Chaoping Xing
{"title":"拟线性复杂度O(NlogN)代数几何码的编码","authors":"Songsong Li;Shu Liu;Liming Ma;Yunqi Wan;Chaoping Xing","doi":"10.1109/TIT.2025.3562424","DOIUrl":null,"url":null,"abstract":"Fast encoding and decoding of codes have always been an important topic in coding theory as well as complexity theory. Although encoding is easier than decoding in general, designing an encoding algorithm of codes of length <italic>N</i> with quasi-linear complexity <inline-formula> <tex-math>$O(N\\log N)$ </tex-math></inline-formula> is not an easy task. Despite of the fact that algebraic geometry codes (AG codes) were discovered in the early 1980s, encoding algorithms of algebraic geometry codes with quasi-linear complexity <inline-formula> <tex-math>$O(N\\log N)$ </tex-math></inline-formula> have not been found except for the simplest algebraic geometry codes-Reed-Solomon codes. The best-known encoding algorithm of algebraic geometry codes based on a class of plane curves has quasi-linear complexity at least <inline-formula> <tex-math>$O(N\\log ^{2} N)$ </tex-math></inline-formula> (Beelen et al. IEEE Trans. Inf. Theory 2021). In this paper, we design an encoding algorithm for algebraic geometry codes with quasi-linear complexity <inline-formula> <tex-math>$O(N\\log N)$ </tex-math></inline-formula>. Moreover, for these fast encodable AG codes, the inverse of encoding, that is, interpolating the message function from the corresponding codeword, can be computed with the same complexity <inline-formula> <tex-math>$O(N\\log N)$ </tex-math></inline-formula>. Our algorithms are applicable to a large class of algebraic geometry codes based on both plane and non-plane curves, including Kummer extensions, Artin-Schreier extensions, and Hermitian field towers.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 7","pages":"5013-5026"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Encoding of Algebraic Geometry Codes With Quasi-Linear Complexity O(NlogN)\",\"authors\":\"Songsong Li;Shu Liu;Liming Ma;Yunqi Wan;Chaoping Xing\",\"doi\":\"10.1109/TIT.2025.3562424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast encoding and decoding of codes have always been an important topic in coding theory as well as complexity theory. Although encoding is easier than decoding in general, designing an encoding algorithm of codes of length <italic>N</i> with quasi-linear complexity <inline-formula> <tex-math>$O(N\\\\log N)$ </tex-math></inline-formula> is not an easy task. Despite of the fact that algebraic geometry codes (AG codes) were discovered in the early 1980s, encoding algorithms of algebraic geometry codes with quasi-linear complexity <inline-formula> <tex-math>$O(N\\\\log N)$ </tex-math></inline-formula> have not been found except for the simplest algebraic geometry codes-Reed-Solomon codes. The best-known encoding algorithm of algebraic geometry codes based on a class of plane curves has quasi-linear complexity at least <inline-formula> <tex-math>$O(N\\\\log ^{2} N)$ </tex-math></inline-formula> (Beelen et al. IEEE Trans. Inf. Theory 2021). In this paper, we design an encoding algorithm for algebraic geometry codes with quasi-linear complexity <inline-formula> <tex-math>$O(N\\\\log N)$ </tex-math></inline-formula>. Moreover, for these fast encodable AG codes, the inverse of encoding, that is, interpolating the message function from the corresponding codeword, can be computed with the same complexity <inline-formula> <tex-math>$O(N\\\\log N)$ </tex-math></inline-formula>. Our algorithms are applicable to a large class of algebraic geometry codes based on both plane and non-plane curves, including Kummer extensions, Artin-Schreier extensions, and Hermitian field towers.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 7\",\"pages\":\"5013-5026\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10970060/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10970060/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

码的快速编解码一直是编码理论和复杂性理论的重要研究课题。虽然编码通常比解码容易,但设计一个长度为N且准线性复杂度为$O(N\log N)$的编码算法并不是一件容易的事情。尽管代数几何码(AG码)早在20世纪80年代初就被发现,但除了最简单的代数几何码- reed - solomon码外,还没有发现具有拟线性复杂度$O(N\log N)$的代数几何码的编码算法。最著名的基于一类平面曲线的代数几何编码算法,其拟线性复杂度至少为$O(N\log ^{2} N)$ (Beelen等)。IEEE反式。Inf理论2021)。本文设计了一种拟线性复杂度$O(N\log N)$的代数几何码的编码算法。此外,对于这些快速可编码的AG码,编码的逆,即从相应的码字插入消息函数,可以以相同的复杂度计算$O(N\log N)$。我们的算法适用于基于平面和非平面曲线的大量代数几何码,包括Kummer扩展、Artin-Schreier扩展和厄米场塔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encoding of Algebraic Geometry Codes With Quasi-Linear Complexity O(NlogN)
Fast encoding and decoding of codes have always been an important topic in coding theory as well as complexity theory. Although encoding is easier than decoding in general, designing an encoding algorithm of codes of length N with quasi-linear complexity $O(N\log N)$ is not an easy task. Despite of the fact that algebraic geometry codes (AG codes) were discovered in the early 1980s, encoding algorithms of algebraic geometry codes with quasi-linear complexity $O(N\log N)$ have not been found except for the simplest algebraic geometry codes-Reed-Solomon codes. The best-known encoding algorithm of algebraic geometry codes based on a class of plane curves has quasi-linear complexity at least $O(N\log ^{2} N)$ (Beelen et al. IEEE Trans. Inf. Theory 2021). In this paper, we design an encoding algorithm for algebraic geometry codes with quasi-linear complexity $O(N\log N)$ . Moreover, for these fast encodable AG codes, the inverse of encoding, that is, interpolating the message function from the corresponding codeword, can be computed with the same complexity $O(N\log N)$ . Our algorithms are applicable to a large class of algebraic geometry codes based on both plane and non-plane curves, including Kummer extensions, Artin-Schreier extensions, and Hermitian field towers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信