先进的光伏组件特性:利用图像变压器从电致发光图像预测电流-电压曲线

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Brandon K. Byford;Laura E. Boucheron;Bruce H. King;Jennifer L. Braid
{"title":"先进的光伏组件特性:利用图像变压器从电致发光图像预测电流-电压曲线","authors":"Brandon K. Byford;Laura E. Boucheron;Bruce H. King;Jennifer L. Braid","doi":"10.1109/JPHOTOV.2025.3562931","DOIUrl":null,"url":null,"abstract":"Individual photovoltaic (PV) module health monitoring can be a daunting task for operation and maintenance of solar farms. Modules can be inspected through luminescence, thermal imaging, and current–voltage (<italic>I–V</i>) curve analyzes for identification of damage and power loss. <italic>I–V</i> curves provide easily interpretable data to determine module health as they directly provide electrical performance metrics. However, in order to obtain these curves, modules must be disconnected from the array and either removed to a solar simulator or characterized in situ with corrections for module temperature, the incident solar spectrum, and intensity. Luminescence or thermal images of a module are relatively easy to acquire in situ. Electroluminescence (EL) images highlight physical defects in the modules but do not provide easily interpretable features to correlate with electrical performance. This work presents a SWin transformer network to predict <italic>I–V</i> curves for PV modules from their corresponding EL images. The predicted <italic>I–V</i> curves allow the accurate prediction of the maximum power point (MPP), short-circuit current <inline-formula><tex-math>$I_{\\text {sc}}$</tex-math></inline-formula>, and open-circuit voltage <inline-formula><tex-math>$V_{\\text {oc}}$</tex-math></inline-formula> with a mean error less of than 1%. Comparing single diode model (SDM) parameters extracted from the predicted curves to those extracted from the true curves, the series resistance <inline-formula><tex-math>$R_{\\text {s}}$</tex-math></inline-formula> demonstrates a mean error of 5.19%, and the photocurrent <inline-formula><tex-math>$I$</tex-math></inline-formula> a mean error of 0.197%. The shunt resistance <inline-formula><tex-math>$R_{\\text {sh}}$</tex-math></inline-formula> and dark current <inline-formula><tex-math>$I_{\\text {o}}$</tex-math></inline-formula> parameters are predicted with larger errors because of their sensitivity to small changes in the <italic>I–V</i> curve.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 4","pages":"557-565"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11002587","citationCount":"0","resultStr":"{\"title\":\"Advanced Photovoltaic Module Characterization: Using Image Transformers for Current–Voltage Curve Prediction From Electroluminescence Images\",\"authors\":\"Brandon K. Byford;Laura E. Boucheron;Bruce H. King;Jennifer L. Braid\",\"doi\":\"10.1109/JPHOTOV.2025.3562931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Individual photovoltaic (PV) module health monitoring can be a daunting task for operation and maintenance of solar farms. Modules can be inspected through luminescence, thermal imaging, and current–voltage (<italic>I–V</i>) curve analyzes for identification of damage and power loss. <italic>I–V</i> curves provide easily interpretable data to determine module health as they directly provide electrical performance metrics. However, in order to obtain these curves, modules must be disconnected from the array and either removed to a solar simulator or characterized in situ with corrections for module temperature, the incident solar spectrum, and intensity. Luminescence or thermal images of a module are relatively easy to acquire in situ. Electroluminescence (EL) images highlight physical defects in the modules but do not provide easily interpretable features to correlate with electrical performance. This work presents a SWin transformer network to predict <italic>I–V</i> curves for PV modules from their corresponding EL images. The predicted <italic>I–V</i> curves allow the accurate prediction of the maximum power point (MPP), short-circuit current <inline-formula><tex-math>$I_{\\\\text {sc}}$</tex-math></inline-formula>, and open-circuit voltage <inline-formula><tex-math>$V_{\\\\text {oc}}$</tex-math></inline-formula> with a mean error less of than 1%. Comparing single diode model (SDM) parameters extracted from the predicted curves to those extracted from the true curves, the series resistance <inline-formula><tex-math>$R_{\\\\text {s}}$</tex-math></inline-formula> demonstrates a mean error of 5.19%, and the photocurrent <inline-formula><tex-math>$I$</tex-math></inline-formula> a mean error of 0.197%. The shunt resistance <inline-formula><tex-math>$R_{\\\\text {sh}}$</tex-math></inline-formula> and dark current <inline-formula><tex-math>$I_{\\\\text {o}}$</tex-math></inline-formula> parameters are predicted with larger errors because of their sensitivity to small changes in the <italic>I–V</i> curve.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 4\",\"pages\":\"557-565\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11002587\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11002587/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11002587/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

单个光伏(PV)模块的健康监测对于太阳能发电场的运行和维护来说是一项艰巨的任务。模块可以通过发光、热成像和电流-电压(I-V)曲线分析来检测,以识别损坏和功率损失。I-V曲线提供易于解释的数据,以确定模块的健康状况,因为它们直接提供电气性能指标。然而,为了获得这些曲线,模块必须与阵列断开,或者移到太阳模拟器中,或者通过模块温度、入射太阳光谱和强度的校正在原位进行表征。模块的发光或热图像相对容易在原位获得。电致发光(EL)图像突出了模块中的物理缺陷,但不能提供与电气性能相关的易于解释的特征。这项工作提出了一个SWin变压器网络,可以根据光伏组件相应的EL图像预测其I-V曲线。预测的I-V曲线可以准确预测最大功率点(MPP)、短路电流$I_{\text {sc}}$和开路电压$V_{\text {oc}}$,平均误差小于1%。将从预测曲线中提取的单二极管模型(SDM)参数与从真实曲线中提取的参数进行比较,串联电阻$R_{\text {s}}$的平均误差为5.19%,光电流$I$的平均误差为0.197%。并联电阻$R_{\text {sh}}$和暗电流$I_{\text {o}}$参数由于对I-V曲线的微小变化敏感,预测误差较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Photovoltaic Module Characterization: Using Image Transformers for Current–Voltage Curve Prediction From Electroluminescence Images
Individual photovoltaic (PV) module health monitoring can be a daunting task for operation and maintenance of solar farms. Modules can be inspected through luminescence, thermal imaging, and current–voltage (I–V) curve analyzes for identification of damage and power loss. I–V curves provide easily interpretable data to determine module health as they directly provide electrical performance metrics. However, in order to obtain these curves, modules must be disconnected from the array and either removed to a solar simulator or characterized in situ with corrections for module temperature, the incident solar spectrum, and intensity. Luminescence or thermal images of a module are relatively easy to acquire in situ. Electroluminescence (EL) images highlight physical defects in the modules but do not provide easily interpretable features to correlate with electrical performance. This work presents a SWin transformer network to predict I–V curves for PV modules from their corresponding EL images. The predicted I–V curves allow the accurate prediction of the maximum power point (MPP), short-circuit current $I_{\text {sc}}$, and open-circuit voltage $V_{\text {oc}}$ with a mean error less of than 1%. Comparing single diode model (SDM) parameters extracted from the predicted curves to those extracted from the true curves, the series resistance $R_{\text {s}}$ demonstrates a mean error of 5.19%, and the photocurrent $I$ a mean error of 0.197%. The shunt resistance $R_{\text {sh}}$ and dark current $I_{\text {o}}$ parameters are predicted with larger errors because of their sensitivity to small changes in the I–V curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信