Khaled Alnuaimi;Ameena Saad Al-Sumaiti;Mohamad Alansari;Huai Wang;Khalifa Hassan Al Hosani
{"title":"基于深度学习的光伏系统健康监测","authors":"Khaled Alnuaimi;Ameena Saad Al-Sumaiti;Mohamad Alansari;Huai Wang;Khalifa Hassan Al Hosani","doi":"10.1109/JPHOTOV.2025.3563887","DOIUrl":null,"url":null,"abstract":"The transition to renewable energy sources like photovoltaic (PV) systems is essential for societal progress, counteracting the adverse effects of fossil fuels. However, managing PV systems entails significant challenges and economic implications. PV fault occurrence necessitates swift detection and resolution, exacerbating financial burdens. Effective fault diagnosis relies heavily on data from PV plant monitoring and energy management systems. Historically, PV monitoring relied on manual inspections, but autonomous aerial vehicle (UAV) technology provides a more efficient and comprehensive solution, enhancing safety and offering detailed imagery, scalability, environmental monitoring, and advanced data analytics. This study utilizes deep learning (DL) approaches to monitor the health of the PV, focusing on analyzing UAV-captured scenes. Specifically, this article presents an end-to-end two-stage DL-based health monitoring framework that consists of semantic segmentation model, SegFormer, for isolating solar panels and object detection model, YOLOv8, for identifying anomalies within the PV modules. The proposed framework is validated and compared with state-of-the-art (SOTA) models on a three publicly available UAV-captured datasets. Results show improvements of 25.8% and 1.5% in solar panel segmentation, and 26.6% in solar panel anomaly detection compared with recent SOTA models.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 4","pages":"577-592"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Health Monitoring for Photovoltaic Systems\",\"authors\":\"Khaled Alnuaimi;Ameena Saad Al-Sumaiti;Mohamad Alansari;Huai Wang;Khalifa Hassan Al Hosani\",\"doi\":\"10.1109/JPHOTOV.2025.3563887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transition to renewable energy sources like photovoltaic (PV) systems is essential for societal progress, counteracting the adverse effects of fossil fuels. However, managing PV systems entails significant challenges and economic implications. PV fault occurrence necessitates swift detection and resolution, exacerbating financial burdens. Effective fault diagnosis relies heavily on data from PV plant monitoring and energy management systems. Historically, PV monitoring relied on manual inspections, but autonomous aerial vehicle (UAV) technology provides a more efficient and comprehensive solution, enhancing safety and offering detailed imagery, scalability, environmental monitoring, and advanced data analytics. This study utilizes deep learning (DL) approaches to monitor the health of the PV, focusing on analyzing UAV-captured scenes. Specifically, this article presents an end-to-end two-stage DL-based health monitoring framework that consists of semantic segmentation model, SegFormer, for isolating solar panels and object detection model, YOLOv8, for identifying anomalies within the PV modules. The proposed framework is validated and compared with state-of-the-art (SOTA) models on a three publicly available UAV-captured datasets. Results show improvements of 25.8% and 1.5% in solar panel segmentation, and 26.6% in solar panel anomaly detection compared with recent SOTA models.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 4\",\"pages\":\"577-592\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10993290/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10993290/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Deep Learning-Based Health Monitoring for Photovoltaic Systems
The transition to renewable energy sources like photovoltaic (PV) systems is essential for societal progress, counteracting the adverse effects of fossil fuels. However, managing PV systems entails significant challenges and economic implications. PV fault occurrence necessitates swift detection and resolution, exacerbating financial burdens. Effective fault diagnosis relies heavily on data from PV plant monitoring and energy management systems. Historically, PV monitoring relied on manual inspections, but autonomous aerial vehicle (UAV) technology provides a more efficient and comprehensive solution, enhancing safety and offering detailed imagery, scalability, environmental monitoring, and advanced data analytics. This study utilizes deep learning (DL) approaches to monitor the health of the PV, focusing on analyzing UAV-captured scenes. Specifically, this article presents an end-to-end two-stage DL-based health monitoring framework that consists of semantic segmentation model, SegFormer, for isolating solar panels and object detection model, YOLOv8, for identifying anomalies within the PV modules. The proposed framework is validated and compared with state-of-the-art (SOTA) models on a three publicly available UAV-captured datasets. Results show improvements of 25.8% and 1.5% in solar panel segmentation, and 26.6% in solar panel anomaly detection compared with recent SOTA models.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.