基于深度学习的光伏系统健康监测

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Khaled Alnuaimi;Ameena Saad Al-Sumaiti;Mohamad Alansari;Huai Wang;Khalifa Hassan Al Hosani
{"title":"基于深度学习的光伏系统健康监测","authors":"Khaled Alnuaimi;Ameena Saad Al-Sumaiti;Mohamad Alansari;Huai Wang;Khalifa Hassan Al Hosani","doi":"10.1109/JPHOTOV.2025.3563887","DOIUrl":null,"url":null,"abstract":"The transition to renewable energy sources like photovoltaic (PV) systems is essential for societal progress, counteracting the adverse effects of fossil fuels. However, managing PV systems entails significant challenges and economic implications. PV fault occurrence necessitates swift detection and resolution, exacerbating financial burdens. Effective fault diagnosis relies heavily on data from PV plant monitoring and energy management systems. Historically, PV monitoring relied on manual inspections, but autonomous aerial vehicle (UAV) technology provides a more efficient and comprehensive solution, enhancing safety and offering detailed imagery, scalability, environmental monitoring, and advanced data analytics. This study utilizes deep learning (DL) approaches to monitor the health of the PV, focusing on analyzing UAV-captured scenes. Specifically, this article presents an end-to-end two-stage DL-based health monitoring framework that consists of semantic segmentation model, SegFormer, for isolating solar panels and object detection model, YOLOv8, for identifying anomalies within the PV modules. The proposed framework is validated and compared with state-of-the-art (SOTA) models on a three publicly available UAV-captured datasets. Results show improvements of 25.8% and 1.5% in solar panel segmentation, and 26.6% in solar panel anomaly detection compared with recent SOTA models.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 4","pages":"577-592"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Health Monitoring for Photovoltaic Systems\",\"authors\":\"Khaled Alnuaimi;Ameena Saad Al-Sumaiti;Mohamad Alansari;Huai Wang;Khalifa Hassan Al Hosani\",\"doi\":\"10.1109/JPHOTOV.2025.3563887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transition to renewable energy sources like photovoltaic (PV) systems is essential for societal progress, counteracting the adverse effects of fossil fuels. However, managing PV systems entails significant challenges and economic implications. PV fault occurrence necessitates swift detection and resolution, exacerbating financial burdens. Effective fault diagnosis relies heavily on data from PV plant monitoring and energy management systems. Historically, PV monitoring relied on manual inspections, but autonomous aerial vehicle (UAV) technology provides a more efficient and comprehensive solution, enhancing safety and offering detailed imagery, scalability, environmental monitoring, and advanced data analytics. This study utilizes deep learning (DL) approaches to monitor the health of the PV, focusing on analyzing UAV-captured scenes. Specifically, this article presents an end-to-end two-stage DL-based health monitoring framework that consists of semantic segmentation model, SegFormer, for isolating solar panels and object detection model, YOLOv8, for identifying anomalies within the PV modules. The proposed framework is validated and compared with state-of-the-art (SOTA) models on a three publicly available UAV-captured datasets. Results show improvements of 25.8% and 1.5% in solar panel segmentation, and 26.6% in solar panel anomaly detection compared with recent SOTA models.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 4\",\"pages\":\"577-592\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10993290/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10993290/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

向光伏(PV)系统等可再生能源的过渡对社会进步至关重要,可以抵消化石燃料的不利影响。然而,管理光伏系统需要巨大的挑战和经济影响。光伏故障的发生需要快速检测和解决,这加剧了经济负担。有效的故障诊断在很大程度上依赖于光伏电站监测和能源管理系统的数据。从历史上看,光伏监测依赖于人工检查,但自主飞行器(UAV)技术提供了更高效、更全面的解决方案,提高了安全性,并提供了详细的图像、可扩展性、环境监测和高级数据分析。本研究利用深度学习(DL)方法监测PV的健康状况,重点分析无人机捕获的场景。具体来说,本文介绍了一个端到端两阶段基于dl的健康监测框架,该框架由语义分割模型SegFormer(用于隔离太阳能电池板)和对象检测模型YOLOv8(用于识别光伏模块内的异常)组成。在三个公开可用的无人机捕获数据集上,对所提出的框架进行了验证并与最先进的(SOTA)模型进行了比较。结果表明,与现有的SOTA模型相比,太阳能电池板的分割能力分别提高了25.8%和1.5%,太阳能电池板异常检测能力提高了26.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Health Monitoring for Photovoltaic Systems
The transition to renewable energy sources like photovoltaic (PV) systems is essential for societal progress, counteracting the adverse effects of fossil fuels. However, managing PV systems entails significant challenges and economic implications. PV fault occurrence necessitates swift detection and resolution, exacerbating financial burdens. Effective fault diagnosis relies heavily on data from PV plant monitoring and energy management systems. Historically, PV monitoring relied on manual inspections, but autonomous aerial vehicle (UAV) technology provides a more efficient and comprehensive solution, enhancing safety and offering detailed imagery, scalability, environmental monitoring, and advanced data analytics. This study utilizes deep learning (DL) approaches to monitor the health of the PV, focusing on analyzing UAV-captured scenes. Specifically, this article presents an end-to-end two-stage DL-based health monitoring framework that consists of semantic segmentation model, SegFormer, for isolating solar panels and object detection model, YOLOv8, for identifying anomalies within the PV modules. The proposed framework is validated and compared with state-of-the-art (SOTA) models on a three publicly available UAV-captured datasets. Results show improvements of 25.8% and 1.5% in solar panel segmentation, and 26.6% in solar panel anomaly detection compared with recent SOTA models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信