空位工程WS2/WSe2平面内异质结选择性传感NOx (x = 1,2): DFT+U研究

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Hang Zhao , Hao Cui , Min Huang , Xin He , Mingjin Yang
{"title":"空位工程WS2/WSe2平面内异质结选择性传感NOx (x = 1,2): DFT+U研究","authors":"Hang Zhao ,&nbsp;Hao Cui ,&nbsp;Min Huang ,&nbsp;Xin He ,&nbsp;Mingjin Yang","doi":"10.1016/j.surfin.2025.106968","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate detection and selective capture of NO<em><sub>x</sub></em> (<em>x</em> = 1, 2) are critical for environmental monitoring and public health. This study employs density functional theory (DFT) to investigate the adsorption behavior of seven toxic gases (NO, N<sub>2</sub>O, NO<sub>2</sub>, NH<sub>3</sub>, H<sub>2</sub>S, SO<sub>2</sub> and CO) on WS<sub>2</sub>/WSe<sub>2</sub> in-plane heterostructures with S or Se vacancies. Both vacancy- engineered monolayers demonstrate strong thermal stability. The introduction of vacancies significantly enhances adsorption strength and charge transfer, particularly for NO<em><sub>x</sub></em> molecules. NO exhibits exceptionally high sensitivity (over 1800 %) and irreversible chemisorption, indicating strong potential for single-use capture applications. In contrast, NO<sub>2</sub> desorbs rapidly (&lt;30 s at 698 K), enabling real-time high-temperature sensing. Weak interactions with the other gases further highlight the system's high selectivity toward NO<em><sub>x</sub></em>. These findings offer theoretical insights for designing efficient NO<em><sub>x</sub></em> sensors and capture materials based on TMD heterostructures.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"72 ","pages":"Article 106968"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacancy-Engineered WS2/WSe2 In-Plane Heterojunctions for Selective Sensing of NOx (x = 1, 2): A DFT+U Investigation\",\"authors\":\"Hang Zhao ,&nbsp;Hao Cui ,&nbsp;Min Huang ,&nbsp;Xin He ,&nbsp;Mingjin Yang\",\"doi\":\"10.1016/j.surfin.2025.106968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate detection and selective capture of NO<em><sub>x</sub></em> (<em>x</em> = 1, 2) are critical for environmental monitoring and public health. This study employs density functional theory (DFT) to investigate the adsorption behavior of seven toxic gases (NO, N<sub>2</sub>O, NO<sub>2</sub>, NH<sub>3</sub>, H<sub>2</sub>S, SO<sub>2</sub> and CO) on WS<sub>2</sub>/WSe<sub>2</sub> in-plane heterostructures with S or Se vacancies. Both vacancy- engineered monolayers demonstrate strong thermal stability. The introduction of vacancies significantly enhances adsorption strength and charge transfer, particularly for NO<em><sub>x</sub></em> molecules. NO exhibits exceptionally high sensitivity (over 1800 %) and irreversible chemisorption, indicating strong potential for single-use capture applications. In contrast, NO<sub>2</sub> desorbs rapidly (&lt;30 s at 698 K), enabling real-time high-temperature sensing. Weak interactions with the other gases further highlight the system's high selectivity toward NO<em><sub>x</sub></em>. These findings offer theoretical insights for designing efficient NO<em><sub>x</sub></em> sensors and capture materials based on TMD heterostructures.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"72 \",\"pages\":\"Article 106968\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023025012246\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025012246","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确检测和选择性捕获氮氧化物(x = 1,2)对环境监测和公众健康至关重要。采用密度泛函理论(DFT)研究了7种有毒气体(NO、N2O、NO2、NH3、H2S、SO2和CO)在具有S或Se空位的WS2/WSe2平面异质结构上的吸附行为。这两种空位工程单层都表现出很强的热稳定性。空位的引入显著提高了吸附强度和电荷转移,特别是对NOx分子。NO表现出异常高的灵敏度(超过1800%)和不可逆的化学吸附,表明了一次性捕获应用的强大潜力。相比之下,NO2快速解吸(在698 K下30 s),实现实时高温传感。与其他气体的弱相互作用进一步突出了系统对NOx的高选择性。这些发现为设计高效的NOx传感器和基于TMD异质结构的捕获材料提供了理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vacancy-Engineered WS2/WSe2 In-Plane Heterojunctions for Selective Sensing of NOx (x = 1, 2): A DFT+U Investigation
Accurate detection and selective capture of NOx (x = 1, 2) are critical for environmental monitoring and public health. This study employs density functional theory (DFT) to investigate the adsorption behavior of seven toxic gases (NO, N2O, NO2, NH3, H2S, SO2 and CO) on WS2/WSe2 in-plane heterostructures with S or Se vacancies. Both vacancy- engineered monolayers demonstrate strong thermal stability. The introduction of vacancies significantly enhances adsorption strength and charge transfer, particularly for NOx molecules. NO exhibits exceptionally high sensitivity (over 1800 %) and irreversible chemisorption, indicating strong potential for single-use capture applications. In contrast, NO2 desorbs rapidly (<30 s at 698 K), enabling real-time high-temperature sensing. Weak interactions with the other gases further highlight the system's high selectivity toward NOx. These findings offer theoretical insights for designing efficient NOx sensors and capture materials based on TMD heterostructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信