Yuxin Yang , Zhongzhi Jin , Huijuan Zhou , Yirui Li , Wanjia Zhang , Yang Xiang , Dawei Wu , Chenghai Li , Faqi Li
{"title":"穿戴式超声对2型糖尿病小鼠血糖水平的调节","authors":"Yuxin Yang , Zhongzhi Jin , Huijuan Zhou , Yirui Li , Wanjia Zhang , Yang Xiang , Dawei Wu , Chenghai Li , Faqi Li","doi":"10.1016/j.ultras.2025.107739","DOIUrl":null,"url":null,"abstract":"<div><div>Type 2 diabetes mellitus (T2DM), a chronic metabolic disorder, imposes a notable burden on human health. Current treatments that require long-term medication and dietary control often face challenges with patient compliance. Although low-intensity pulsed ultrasound (LIPUS) shows promise in regulating blood glucose, the clinical application of traditional ultrasound devices remains challenging due to their large size and high cost. Through theoretical simulation, we designed and fabricated a wearable ultrasound patch with a frequency of 986 kHz and its wearable driving device for use in blood glucose regulation in db/db mice. The liver–pancreas region of the db/db mice was exposed to the wearable ultrasound device with the following parameters: frequency at 986 kHz, duty cycle at 30 %, pulse repetition frequency of 2 kHz, I<sub>SATA</sub> of 86.81 mW/cm<sup>2</sup>, and 10-min duration. Results showed that LIPUS-treated db/db mice exhibited a prolonged time for blood glucose to return to baseline levels after 8-week LIPUS exposure. Improved glucose tolerance, reduced insulin resistance, and decreased body weight were also observed. Liver morphology was well maintained, demonstrating LIPUS effectiveness in regulating blood glucose in db/db mice. Biological safety tests indicated no adverse effects on the tissues. This study demonstrates that the use of a wearable ultrasound device, through low-intensity pulsed ultrasound (LIPUS), can effectively regulate blood glucose levels in db/db mice. Our approach offers a noninvasive solution for regulating blood glucose levels in patients with T2DM and holds promise for ultrasound application in metabolic disease treatment.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"155 ","pages":"Article 107739"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wearable ultrasound regulation of blood glucose levels in type 2 diabetic db/db mice\",\"authors\":\"Yuxin Yang , Zhongzhi Jin , Huijuan Zhou , Yirui Li , Wanjia Zhang , Yang Xiang , Dawei Wu , Chenghai Li , Faqi Li\",\"doi\":\"10.1016/j.ultras.2025.107739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Type 2 diabetes mellitus (T2DM), a chronic metabolic disorder, imposes a notable burden on human health. Current treatments that require long-term medication and dietary control often face challenges with patient compliance. Although low-intensity pulsed ultrasound (LIPUS) shows promise in regulating blood glucose, the clinical application of traditional ultrasound devices remains challenging due to their large size and high cost. Through theoretical simulation, we designed and fabricated a wearable ultrasound patch with a frequency of 986 kHz and its wearable driving device for use in blood glucose regulation in db/db mice. The liver–pancreas region of the db/db mice was exposed to the wearable ultrasound device with the following parameters: frequency at 986 kHz, duty cycle at 30 %, pulse repetition frequency of 2 kHz, I<sub>SATA</sub> of 86.81 mW/cm<sup>2</sup>, and 10-min duration. Results showed that LIPUS-treated db/db mice exhibited a prolonged time for blood glucose to return to baseline levels after 8-week LIPUS exposure. Improved glucose tolerance, reduced insulin resistance, and decreased body weight were also observed. Liver morphology was well maintained, demonstrating LIPUS effectiveness in regulating blood glucose in db/db mice. Biological safety tests indicated no adverse effects on the tissues. This study demonstrates that the use of a wearable ultrasound device, through low-intensity pulsed ultrasound (LIPUS), can effectively regulate blood glucose levels in db/db mice. Our approach offers a noninvasive solution for regulating blood glucose levels in patients with T2DM and holds promise for ultrasound application in metabolic disease treatment.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"155 \",\"pages\":\"Article 107739\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X25001763\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25001763","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Wearable ultrasound regulation of blood glucose levels in type 2 diabetic db/db mice
Type 2 diabetes mellitus (T2DM), a chronic metabolic disorder, imposes a notable burden on human health. Current treatments that require long-term medication and dietary control often face challenges with patient compliance. Although low-intensity pulsed ultrasound (LIPUS) shows promise in regulating blood glucose, the clinical application of traditional ultrasound devices remains challenging due to their large size and high cost. Through theoretical simulation, we designed and fabricated a wearable ultrasound patch with a frequency of 986 kHz and its wearable driving device for use in blood glucose regulation in db/db mice. The liver–pancreas region of the db/db mice was exposed to the wearable ultrasound device with the following parameters: frequency at 986 kHz, duty cycle at 30 %, pulse repetition frequency of 2 kHz, ISATA of 86.81 mW/cm2, and 10-min duration. Results showed that LIPUS-treated db/db mice exhibited a prolonged time for blood glucose to return to baseline levels after 8-week LIPUS exposure. Improved glucose tolerance, reduced insulin resistance, and decreased body weight were also observed. Liver morphology was well maintained, demonstrating LIPUS effectiveness in regulating blood glucose in db/db mice. Biological safety tests indicated no adverse effects on the tissues. This study demonstrates that the use of a wearable ultrasound device, through low-intensity pulsed ultrasound (LIPUS), can effectively regulate blood glucose levels in db/db mice. Our approach offers a noninvasive solution for regulating blood glucose levels in patients with T2DM and holds promise for ultrasound application in metabolic disease treatment.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.