{"title":"区域和区域分层流动能量学研究的大力一致的局部APE预算","authors":"Rémi Tailleux , Guillaume Roullet","doi":"10.1016/j.ocemod.2025.102579","DOIUrl":null,"url":null,"abstract":"<div><div>Because it allows a rigorous separation between reversible and irreversible processes, the concept of available potential energy (APE) has become central to the study of turbulent stratified fluids. In ocean modelling, it is fundamental to the parameterisation of meso-scale ocean eddies and of the turbulent mixing of heat and salt. However, how to apply APE theory consistently to local or regional subdomains has been a longstanding source of confusion due to the globally defined Lorenz reference state entering the definition of APE and of buoyancy forces being generally thought to be meaningless in those cases. In practice, this is often remedied by introducing heuristic ‘localised’ forms of APE density depending uniquely on region-specific reference states, possibly diverging significantly from the global Lorenz reference state. In this paper, we argue that across-scale energy transfers can only be consistently described if localised forms of APE density are defined as the eddy APE component of an exact mean/eddy decomposition of the APE density, for which a new physically more intuitive and mathematically simpler framework is proposed. The eddy APE density thus defined exhibits a much weaker dependency on the global Lorenz reference state than the mean APE, in agreement with physical intuition, but with a different structure than that of existing heuristic localised APE forms. Our framework establishes a rigorous physical basis for linking parameterised energy transfers to molecular viscous and diffusive dissipation rates. We illustrate its potential usefulness by discussing the energetics implications of standard advective and diffusive parameterisations of the turbulent density flux, which reveals potential new sources of numerical instability in ocean models.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"197 ","pages":"Article 102579"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energetically consistent localised APE budgets for local and regional studies of stratified flow energetics\",\"authors\":\"Rémi Tailleux , Guillaume Roullet\",\"doi\":\"10.1016/j.ocemod.2025.102579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Because it allows a rigorous separation between reversible and irreversible processes, the concept of available potential energy (APE) has become central to the study of turbulent stratified fluids. In ocean modelling, it is fundamental to the parameterisation of meso-scale ocean eddies and of the turbulent mixing of heat and salt. However, how to apply APE theory consistently to local or regional subdomains has been a longstanding source of confusion due to the globally defined Lorenz reference state entering the definition of APE and of buoyancy forces being generally thought to be meaningless in those cases. In practice, this is often remedied by introducing heuristic ‘localised’ forms of APE density depending uniquely on region-specific reference states, possibly diverging significantly from the global Lorenz reference state. In this paper, we argue that across-scale energy transfers can only be consistently described if localised forms of APE density are defined as the eddy APE component of an exact mean/eddy decomposition of the APE density, for which a new physically more intuitive and mathematically simpler framework is proposed. The eddy APE density thus defined exhibits a much weaker dependency on the global Lorenz reference state than the mean APE, in agreement with physical intuition, but with a different structure than that of existing heuristic localised APE forms. Our framework establishes a rigorous physical basis for linking parameterised energy transfers to molecular viscous and diffusive dissipation rates. We illustrate its potential usefulness by discussing the energetics implications of standard advective and diffusive parameterisations of the turbulent density flux, which reveals potential new sources of numerical instability in ocean models.</div></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"197 \",\"pages\":\"Article 102579\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1463500325000824\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325000824","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Energetically consistent localised APE budgets for local and regional studies of stratified flow energetics
Because it allows a rigorous separation between reversible and irreversible processes, the concept of available potential energy (APE) has become central to the study of turbulent stratified fluids. In ocean modelling, it is fundamental to the parameterisation of meso-scale ocean eddies and of the turbulent mixing of heat and salt. However, how to apply APE theory consistently to local or regional subdomains has been a longstanding source of confusion due to the globally defined Lorenz reference state entering the definition of APE and of buoyancy forces being generally thought to be meaningless in those cases. In practice, this is often remedied by introducing heuristic ‘localised’ forms of APE density depending uniquely on region-specific reference states, possibly diverging significantly from the global Lorenz reference state. In this paper, we argue that across-scale energy transfers can only be consistently described if localised forms of APE density are defined as the eddy APE component of an exact mean/eddy decomposition of the APE density, for which a new physically more intuitive and mathematically simpler framework is proposed. The eddy APE density thus defined exhibits a much weaker dependency on the global Lorenz reference state than the mean APE, in agreement with physical intuition, but with a different structure than that of existing heuristic localised APE forms. Our framework establishes a rigorous physical basis for linking parameterised energy transfers to molecular viscous and diffusive dissipation rates. We illustrate its potential usefulness by discussing the energetics implications of standard advective and diffusive parameterisations of the turbulent density flux, which reveals potential new sources of numerical instability in ocean models.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.