Bing Qi , Shujuan Lin , Yaohua Guo , Linglin Feng , Lijun Su , Yang Liu , Alain Goriely , Tian Jian Lu , Shaobao Liu
{"title":"机械敏感通道的局部共振","authors":"Bing Qi , Shujuan Lin , Yaohua Guo , Linglin Feng , Lijun Su , Yang Liu , Alain Goriely , Tian Jian Lu , Shaobao Liu","doi":"10.1016/j.jmps.2025.106249","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanosensitive channels are crucial biological structures that respond to mechanical stimuli by altering cellular processes. Recent studies suggest that these channels can be activated by ultrasound at specific frequencies, yet the underlying physical mechanisms remain unclear. Membrane tension is known to play a pivotal role in the regulation of mechanosensitive channels. Here, we investigate whether ultrasound can modulate membrane tension to facilitate channel activation. To do so, we develop a theoretical model based on the local resonance of mechanosensitive channels embedded in lipid membranes when subjected to ultrasonic excitation. Our results reveal that ultrasound can induce localized membrane resonance, leading to increased membrane tension in the vicinity of the channel. This tension increase, when occurring at specific resonant frequencies, is sufficient to activate mechanosensitive channels. Furthermore, we establish the effective frequency range for channel activation and examine the influence of key parameters such as ultrasound intensity, channel molecular mass, and damping effects on this range. Our findings provide a mechanistic explanation for ultrasound-induced activation of mechanosensitive channels, offering valuable insights for applications in neuromodulation, targeted therapy, and mechanomedicine.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"203 ","pages":"Article 106249"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local resonance of mechanosensitive channels\",\"authors\":\"Bing Qi , Shujuan Lin , Yaohua Guo , Linglin Feng , Lijun Su , Yang Liu , Alain Goriely , Tian Jian Lu , Shaobao Liu\",\"doi\":\"10.1016/j.jmps.2025.106249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mechanosensitive channels are crucial biological structures that respond to mechanical stimuli by altering cellular processes. Recent studies suggest that these channels can be activated by ultrasound at specific frequencies, yet the underlying physical mechanisms remain unclear. Membrane tension is known to play a pivotal role in the regulation of mechanosensitive channels. Here, we investigate whether ultrasound can modulate membrane tension to facilitate channel activation. To do so, we develop a theoretical model based on the local resonance of mechanosensitive channels embedded in lipid membranes when subjected to ultrasonic excitation. Our results reveal that ultrasound can induce localized membrane resonance, leading to increased membrane tension in the vicinity of the channel. This tension increase, when occurring at specific resonant frequencies, is sufficient to activate mechanosensitive channels. Furthermore, we establish the effective frequency range for channel activation and examine the influence of key parameters such as ultrasound intensity, channel molecular mass, and damping effects on this range. Our findings provide a mechanistic explanation for ultrasound-induced activation of mechanosensitive channels, offering valuable insights for applications in neuromodulation, targeted therapy, and mechanomedicine.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"203 \",\"pages\":\"Article 106249\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002250962500225X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962500225X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanosensitive channels are crucial biological structures that respond to mechanical stimuli by altering cellular processes. Recent studies suggest that these channels can be activated by ultrasound at specific frequencies, yet the underlying physical mechanisms remain unclear. Membrane tension is known to play a pivotal role in the regulation of mechanosensitive channels. Here, we investigate whether ultrasound can modulate membrane tension to facilitate channel activation. To do so, we develop a theoretical model based on the local resonance of mechanosensitive channels embedded in lipid membranes when subjected to ultrasonic excitation. Our results reveal that ultrasound can induce localized membrane resonance, leading to increased membrane tension in the vicinity of the channel. This tension increase, when occurring at specific resonant frequencies, is sufficient to activate mechanosensitive channels. Furthermore, we establish the effective frequency range for channel activation and examine the influence of key parameters such as ultrasound intensity, channel molecular mass, and damping effects on this range. Our findings provide a mechanistic explanation for ultrasound-induced activation of mechanosensitive channels, offering valuable insights for applications in neuromodulation, targeted therapy, and mechanomedicine.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.