{"title":"另一种方法是利用电测井来估算埃塞俄比亚阿瓦什河上游次盆地火山含水层的孔隙度和水力导电性","authors":"A. Muauz , B. Berehanu , H. Bedru","doi":"10.1016/j.ejrh.2025.102547","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Upper Awash River sub-basin, Ethiopia</div></div><div><h3>Study focus</h3><div>This study introduces an alternative method for characterizing volcanic aquifers using electrical well logging to estimate porosity and hydraulic conductivity. Integrating resistivity data with Archie’s law and the Kozeny–Carman equation, it provides a practical approach for evaluating aquifer properties in complex terrains. Analysis involved data from 335 wells, including resistivity logs, gamma logs, 1230 water quality samples, and 290 wells with lithological and pumping test records, addressing challenges faced by conventional techniques in volcanic regions.</div></div><div><h3>New insights for the region</h3><div>The study revealed apparent and intrinsic formation factors for basalt, tuff, and ignimbrite, which were applied to the Humble equation to estimate porosity, yielding values between 10.02 % and 23.14 %. Hydraulic conductivity, calculated using the Kozeny–Carman equation, ranged from 2.4 to 33.1 m/day. Validation through conventional pumping tests across seven sub-regions demonstrated strong alignment, with hydraulic conductivity values of 5.3 m/day (A), 2.8 m/day (B), 33.1 m/day (C), 4.6 m/day (D), 2.4 m/day (E), 8.1 m/day (F), and 6.2 m/day (G). Pumping test ranges of 0.2–63.6 m/day further corroborated the findings. This study underscores the potential of resistivity well logging as a cost-effective, efficient alternative for characterizing hydraulic properties in volcanic aquifers. It offers critical new insights for sustainable groundwater management in geologically complex regions, providing a replicable framework for similar settings worldwide.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"60 ","pages":"Article 102547"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alternative approach using electrical well logging for estimating porosity and hydraulic conductivity in volcanic aquifers of the upper Awash River sub-basin, Ethiopia\",\"authors\":\"A. Muauz , B. Berehanu , H. Bedru\",\"doi\":\"10.1016/j.ejrh.2025.102547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>Upper Awash River sub-basin, Ethiopia</div></div><div><h3>Study focus</h3><div>This study introduces an alternative method for characterizing volcanic aquifers using electrical well logging to estimate porosity and hydraulic conductivity. Integrating resistivity data with Archie’s law and the Kozeny–Carman equation, it provides a practical approach for evaluating aquifer properties in complex terrains. Analysis involved data from 335 wells, including resistivity logs, gamma logs, 1230 water quality samples, and 290 wells with lithological and pumping test records, addressing challenges faced by conventional techniques in volcanic regions.</div></div><div><h3>New insights for the region</h3><div>The study revealed apparent and intrinsic formation factors for basalt, tuff, and ignimbrite, which were applied to the Humble equation to estimate porosity, yielding values between 10.02 % and 23.14 %. Hydraulic conductivity, calculated using the Kozeny–Carman equation, ranged from 2.4 to 33.1 m/day. Validation through conventional pumping tests across seven sub-regions demonstrated strong alignment, with hydraulic conductivity values of 5.3 m/day (A), 2.8 m/day (B), 33.1 m/day (C), 4.6 m/day (D), 2.4 m/day (E), 8.1 m/day (F), and 6.2 m/day (G). Pumping test ranges of 0.2–63.6 m/day further corroborated the findings. This study underscores the potential of resistivity well logging as a cost-effective, efficient alternative for characterizing hydraulic properties in volcanic aquifers. It offers critical new insights for sustainable groundwater management in geologically complex regions, providing a replicable framework for similar settings worldwide.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"60 \",\"pages\":\"Article 102547\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581825003726\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825003726","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
An alternative approach using electrical well logging for estimating porosity and hydraulic conductivity in volcanic aquifers of the upper Awash River sub-basin, Ethiopia
Study region
Upper Awash River sub-basin, Ethiopia
Study focus
This study introduces an alternative method for characterizing volcanic aquifers using electrical well logging to estimate porosity and hydraulic conductivity. Integrating resistivity data with Archie’s law and the Kozeny–Carman equation, it provides a practical approach for evaluating aquifer properties in complex terrains. Analysis involved data from 335 wells, including resistivity logs, gamma logs, 1230 water quality samples, and 290 wells with lithological and pumping test records, addressing challenges faced by conventional techniques in volcanic regions.
New insights for the region
The study revealed apparent and intrinsic formation factors for basalt, tuff, and ignimbrite, which were applied to the Humble equation to estimate porosity, yielding values between 10.02 % and 23.14 %. Hydraulic conductivity, calculated using the Kozeny–Carman equation, ranged from 2.4 to 33.1 m/day. Validation through conventional pumping tests across seven sub-regions demonstrated strong alignment, with hydraulic conductivity values of 5.3 m/day (A), 2.8 m/day (B), 33.1 m/day (C), 4.6 m/day (D), 2.4 m/day (E), 8.1 m/day (F), and 6.2 m/day (G). Pumping test ranges of 0.2–63.6 m/day further corroborated the findings. This study underscores the potential of resistivity well logging as a cost-effective, efficient alternative for characterizing hydraulic properties in volcanic aquifers. It offers critical new insights for sustainable groundwater management in geologically complex regions, providing a replicable framework for similar settings worldwide.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.