提高电池热安全性的共晶水合盐复合相变材料

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Zikai Guo , Zixiong Zhou , Xinxi Li , Likun Yin , Shuangyi zhang , Wensheng Yang , Yuhang Wu , Di Wu , Canbing Li
{"title":"提高电池热安全性的共晶水合盐复合相变材料","authors":"Zikai Guo ,&nbsp;Zixiong Zhou ,&nbsp;Xinxi Li ,&nbsp;Likun Yin ,&nbsp;Shuangyi zhang ,&nbsp;Wensheng Yang ,&nbsp;Yuhang Wu ,&nbsp;Di Wu ,&nbsp;Canbing Li","doi":"10.1016/j.applthermaleng.2025.127262","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries (LIBs) face serious safety threats owing to their susceptibility to thermal runaway (TR), particularly under extreme operating conditions, which compromise the reliability of electric vehicles and energy storage systems. Herein, an innovative inorganic hydrated salt composite phase change material (HSCPCM) has proposed for the thermal management of battery modules, aiming to improve the safety of LIBs under both normal operating conditions and TR scenarios. The developed binary eutectic system (DPES2), composed of disodium hydrogen phosphate dodecahydrate and sodium thiosulfate pentahydrate, substantially reduces supercooling. Additionally, the incorporation of polyacrylic acid sodium, expanded graphite, and superabsorbent polymer addresses phase separation, leakage, and cycling stability issues. Experimental results demonstrate that the optimized DPES2 demonstrates excellent thermal management and effectively suppresses TR for battery module, reducing the risk of fires and explosions at high temperatures. Therefore, this research suggests that the inorganic synergistic strategy can achieve dual-level thermal regulation by integrating latent heat storage with thermochemical heat storage to ensure long-term cycling stability. These findings suggest that the HSCPCM offers a practical solution for enhancing the safety and reliability of power batteries and energy storage systems.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"278 ","pages":"Article 127262"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eutectic hydrated salt composite phase change material for enhancing thermal safety of batteries\",\"authors\":\"Zikai Guo ,&nbsp;Zixiong Zhou ,&nbsp;Xinxi Li ,&nbsp;Likun Yin ,&nbsp;Shuangyi zhang ,&nbsp;Wensheng Yang ,&nbsp;Yuhang Wu ,&nbsp;Di Wu ,&nbsp;Canbing Li\",\"doi\":\"10.1016/j.applthermaleng.2025.127262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-ion batteries (LIBs) face serious safety threats owing to their susceptibility to thermal runaway (TR), particularly under extreme operating conditions, which compromise the reliability of electric vehicles and energy storage systems. Herein, an innovative inorganic hydrated salt composite phase change material (HSCPCM) has proposed for the thermal management of battery modules, aiming to improve the safety of LIBs under both normal operating conditions and TR scenarios. The developed binary eutectic system (DPES2), composed of disodium hydrogen phosphate dodecahydrate and sodium thiosulfate pentahydrate, substantially reduces supercooling. Additionally, the incorporation of polyacrylic acid sodium, expanded graphite, and superabsorbent polymer addresses phase separation, leakage, and cycling stability issues. Experimental results demonstrate that the optimized DPES2 demonstrates excellent thermal management and effectively suppresses TR for battery module, reducing the risk of fires and explosions at high temperatures. Therefore, this research suggests that the inorganic synergistic strategy can achieve dual-level thermal regulation by integrating latent heat storage with thermochemical heat storage to ensure long-term cycling stability. These findings suggest that the HSCPCM offers a practical solution for enhancing the safety and reliability of power batteries and energy storage systems.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"278 \",\"pages\":\"Article 127262\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135943112501854X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135943112501854X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(LIBs)由于易发生热失控(TR)而面临严重的安全威胁,特别是在极端工作条件下,这会影响电动汽车和储能系统的可靠性。本文提出了一种创新的无机水合盐复合相变材料(HSCPCM),用于电池模块的热管理,旨在提高锂电池在正常工况和TR工况下的安全性。由十二水合磷酸氢二钠和五水合硫代硫酸钠组成的二元共晶体系(DPES2)大大降低了过冷性。此外,聚丙烯酸钠、膨胀石墨和高吸水性聚合物的掺入解决了相分离、泄漏和循环稳定性问题。实验结果表明,优化后的DPES2具有良好的热管理性能,有效抑制了电池模块的TR,降低了高温下火灾和爆炸的风险。因此,本研究表明,无机协同策略可以通过潜热储热与热化学储热相结合,实现双级热调节,确保长期循环稳定性。这些发现表明,HSCPCM为提高动力电池和储能系统的安全性和可靠性提供了一种实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eutectic hydrated salt composite phase change material for enhancing thermal safety of batteries
Lithium-ion batteries (LIBs) face serious safety threats owing to their susceptibility to thermal runaway (TR), particularly under extreme operating conditions, which compromise the reliability of electric vehicles and energy storage systems. Herein, an innovative inorganic hydrated salt composite phase change material (HSCPCM) has proposed for the thermal management of battery modules, aiming to improve the safety of LIBs under both normal operating conditions and TR scenarios. The developed binary eutectic system (DPES2), composed of disodium hydrogen phosphate dodecahydrate and sodium thiosulfate pentahydrate, substantially reduces supercooling. Additionally, the incorporation of polyacrylic acid sodium, expanded graphite, and superabsorbent polymer addresses phase separation, leakage, and cycling stability issues. Experimental results demonstrate that the optimized DPES2 demonstrates excellent thermal management and effectively suppresses TR for battery module, reducing the risk of fires and explosions at high temperatures. Therefore, this research suggests that the inorganic synergistic strategy can achieve dual-level thermal regulation by integrating latent heat storage with thermochemical heat storage to ensure long-term cycling stability. These findings suggest that the HSCPCM offers a practical solution for enhancing the safety and reliability of power batteries and energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信