Xiao Niu , Yang Zhang , Huige Zhang , Shengda Qi , Mingfang Wu , Meiyi Hui , Tao Yi , Hongli Chen
{"title":"不同表面积纳米级共价有机骨架在开管毛细管电色谱中的分离性能及机理研究","authors":"Xiao Niu , Yang Zhang , Huige Zhang , Shengda Qi , Mingfang Wu , Meiyi Hui , Tao Yi , Hongli Chen","doi":"10.1016/j.chroma.2025.466155","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) have attracted considerable attention as promising stationary phases in chromatographic separations, owing to their exceptional structural attributes. Nevertheless, a systematical methodology for correlating the specific surface area of COFs with their separation performance remains underdeveloped. In this study, four imine-based 1,3,5-tris(4-aminophenyl)benzene-2,5-dimethoxyterephthalaldehyde (TPB-DMTP) COFs exhibiting distinct specific surface area due to the differences in particle size, were employed as stationary phases in open-tubular capillary electrochromatography (OT-CEC). As the volume of acetic acid (HAc) was raised from 0.3 mL to 0.7 mL, the specific surface areas of the four TPB-DMTP COFs exhibited a corresponding increase from 1267 m<sup>2</sup>/g to 2226 m<sup>2</sup>/g. Four TPB-DMTP COFs-coated capillaries regulated by HAc amount were fabricated using an in-situ growth method at room temperature. TPB-DMTP-0.4 COF-coated capillaries (prepared by adding 0.4 mL HAc) were utilized as the model column, illustrating good separation performance for six representative groups of neutral, basic and acidic analytes. Moreover, TPB-DMTP-0.4 COF-coated capillaries showed good reproducibility and stability (relative standard deviations of retention time and peak area of <10 %) and long lifetime (>200 runs). Furthermore, it was found that the separation efficiency was significantly improved and the migration time was prolonged with the increasing specific surface area by comparing the four TPB-DMTP COFs-coated capillaries. Upon eliminating the influences of electroosmotic flow (EOF) and coating thickness, the specific surface area was identified as a key factor affecting separation performance. Notably, the results revealed that both excessively high and low specific surface areas were unfavorable for improving separation performance. These findings provide valuable insights for the rational design and optimization of COFs-based chromatographic stationary phases.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1757 ","pages":"Article 466155"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of separation performance and mechanism of nanoscale hierarchical covalent organic frameworks with different surface areas in open-tubular capillary electrochromatography\",\"authors\":\"Xiao Niu , Yang Zhang , Huige Zhang , Shengda Qi , Mingfang Wu , Meiyi Hui , Tao Yi , Hongli Chen\",\"doi\":\"10.1016/j.chroma.2025.466155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Covalent organic frameworks (COFs) have attracted considerable attention as promising stationary phases in chromatographic separations, owing to their exceptional structural attributes. Nevertheless, a systematical methodology for correlating the specific surface area of COFs with their separation performance remains underdeveloped. In this study, four imine-based 1,3,5-tris(4-aminophenyl)benzene-2,5-dimethoxyterephthalaldehyde (TPB-DMTP) COFs exhibiting distinct specific surface area due to the differences in particle size, were employed as stationary phases in open-tubular capillary electrochromatography (OT-CEC). As the volume of acetic acid (HAc) was raised from 0.3 mL to 0.7 mL, the specific surface areas of the four TPB-DMTP COFs exhibited a corresponding increase from 1267 m<sup>2</sup>/g to 2226 m<sup>2</sup>/g. Four TPB-DMTP COFs-coated capillaries regulated by HAc amount were fabricated using an in-situ growth method at room temperature. TPB-DMTP-0.4 COF-coated capillaries (prepared by adding 0.4 mL HAc) were utilized as the model column, illustrating good separation performance for six representative groups of neutral, basic and acidic analytes. Moreover, TPB-DMTP-0.4 COF-coated capillaries showed good reproducibility and stability (relative standard deviations of retention time and peak area of <10 %) and long lifetime (>200 runs). Furthermore, it was found that the separation efficiency was significantly improved and the migration time was prolonged with the increasing specific surface area by comparing the four TPB-DMTP COFs-coated capillaries. Upon eliminating the influences of electroosmotic flow (EOF) and coating thickness, the specific surface area was identified as a key factor affecting separation performance. Notably, the results revealed that both excessively high and low specific surface areas were unfavorable for improving separation performance. These findings provide valuable insights for the rational design and optimization of COFs-based chromatographic stationary phases.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1757 \",\"pages\":\"Article 466155\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967325005011\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325005011","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigation of separation performance and mechanism of nanoscale hierarchical covalent organic frameworks with different surface areas in open-tubular capillary electrochromatography
Covalent organic frameworks (COFs) have attracted considerable attention as promising stationary phases in chromatographic separations, owing to their exceptional structural attributes. Nevertheless, a systematical methodology for correlating the specific surface area of COFs with their separation performance remains underdeveloped. In this study, four imine-based 1,3,5-tris(4-aminophenyl)benzene-2,5-dimethoxyterephthalaldehyde (TPB-DMTP) COFs exhibiting distinct specific surface area due to the differences in particle size, were employed as stationary phases in open-tubular capillary electrochromatography (OT-CEC). As the volume of acetic acid (HAc) was raised from 0.3 mL to 0.7 mL, the specific surface areas of the four TPB-DMTP COFs exhibited a corresponding increase from 1267 m2/g to 2226 m2/g. Four TPB-DMTP COFs-coated capillaries regulated by HAc amount were fabricated using an in-situ growth method at room temperature. TPB-DMTP-0.4 COF-coated capillaries (prepared by adding 0.4 mL HAc) were utilized as the model column, illustrating good separation performance for six representative groups of neutral, basic and acidic analytes. Moreover, TPB-DMTP-0.4 COF-coated capillaries showed good reproducibility and stability (relative standard deviations of retention time and peak area of <10 %) and long lifetime (>200 runs). Furthermore, it was found that the separation efficiency was significantly improved and the migration time was prolonged with the increasing specific surface area by comparing the four TPB-DMTP COFs-coated capillaries. Upon eliminating the influences of electroosmotic flow (EOF) and coating thickness, the specific surface area was identified as a key factor affecting separation performance. Notably, the results revealed that both excessively high and low specific surface areas were unfavorable for improving separation performance. These findings provide valuable insights for the rational design and optimization of COFs-based chromatographic stationary phases.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.