质量比对一维Frenkel-Kontorova量子双原子链中间隙本然局域结构形成和能量分布的影响

IF 2.5 3区 物理与天体物理 Q2 ACOUSTICS
R. Abouem A. Ribama , Z.I. Djoufack , J.P. Nguenang
{"title":"质量比对一维Frenkel-Kontorova量子双原子链中间隙本然局域结构形成和能量分布的影响","authors":"R. Abouem A. Ribama ,&nbsp;Z.I. Djoufack ,&nbsp;J.P. Nguenang","doi":"10.1016/j.wavemoti.2025.103561","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the mass ratio influence on the formation of gap intrinsic localized structures and energy distribution in a 1D Frenkel–Kontorova quantum diatomic chain. We analyze the coupled nonlinear excitations and it is found that : On the one hand, a gap frequency is obtained through the linear spectrum as well as different families of gap breather solutions depending on the gap frequency values, On the other hand, the existence of intrinsic localized structures for some particular frequencies in the vicinity of the gap and the formation of the modulation instability (MI) zones, as well as the intensity of the growth rate in addition to the amplitude of energy density can be influenced by the mass ratio of particles. Furthermore, there is a large gap opened in the phonon spectrum for a very small mass ratio and the phenomenon of gap cannot exist if the above condition is not satisfied. The accuracy of the analytical studies is confirmed by an excellent agreement with the numerical simulations.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103561"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the mass ratio on the formation of gap intrinsic localized structures and energy distribution in a 1D Frenkel–Kontorova quantum diatomic chain\",\"authors\":\"R. Abouem A. Ribama ,&nbsp;Z.I. Djoufack ,&nbsp;J.P. Nguenang\",\"doi\":\"10.1016/j.wavemoti.2025.103561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the mass ratio influence on the formation of gap intrinsic localized structures and energy distribution in a 1D Frenkel–Kontorova quantum diatomic chain. We analyze the coupled nonlinear excitations and it is found that : On the one hand, a gap frequency is obtained through the linear spectrum as well as different families of gap breather solutions depending on the gap frequency values, On the other hand, the existence of intrinsic localized structures for some particular frequencies in the vicinity of the gap and the formation of the modulation instability (MI) zones, as well as the intensity of the growth rate in addition to the amplitude of energy density can be influenced by the mass ratio of particles. Furthermore, there is a large gap opened in the phonon spectrum for a very small mass ratio and the phenomenon of gap cannot exist if the above condition is not satisfied. The accuracy of the analytical studies is confirmed by an excellent agreement with the numerical simulations.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103561\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525000721\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525000721","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一维Frenkel-Kontorova量子双原子链中质量比对间隙本然局域结构形成和能量分布的影响。对耦合非线性激励进行了分析,发现:一方面,频率是通过线性光谱以及不同家庭的差距呼吸的解决方案取决于频率值的差距,另一方面,内在的存在局部结构对一些特定频率附近的差距,调制不稳定性(MI)的形成区域,以及强度增长率除了振幅能量密度可以影响粒子的质量比。此外,在非常小的质量比下,声子谱会打开一个很大的间隙,如果不满足上述条件,则不可能存在间隙现象。分析结果与数值模拟结果非常吻合,证实了分析结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the mass ratio on the formation of gap intrinsic localized structures and energy distribution in a 1D Frenkel–Kontorova quantum diatomic chain
We investigate the mass ratio influence on the formation of gap intrinsic localized structures and energy distribution in a 1D Frenkel–Kontorova quantum diatomic chain. We analyze the coupled nonlinear excitations and it is found that : On the one hand, a gap frequency is obtained through the linear spectrum as well as different families of gap breather solutions depending on the gap frequency values, On the other hand, the existence of intrinsic localized structures for some particular frequencies in the vicinity of the gap and the formation of the modulation instability (MI) zones, as well as the intensity of the growth rate in addition to the amplitude of energy density can be influenced by the mass ratio of particles. Furthermore, there is a large gap opened in the phonon spectrum for a very small mass ratio and the phenomenon of gap cannot exist if the above condition is not satisfied. The accuracy of the analytical studies is confirmed by an excellent agreement with the numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信