Hongzhe Chen , Tongxi Lin , Zeno Rizqi Ramadhan , Aditya Rawal , Yuta Nishina , Amir Karton , Xiaojun Ren , Rakesh Joshi
{"title":"有机溶剂运输通过还原氧化石墨烯膜与控制氧含量","authors":"Hongzhe Chen , Tongxi Lin , Zeno Rizqi Ramadhan , Aditya Rawal , Yuta Nishina , Amir Karton , Xiaojun Ren , Rakesh Joshi","doi":"10.1016/j.carbon.2025.120539","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in membranes based on 2-dimensional (2D) materials have enabled precise control over angstrom-scale pores, providing a unique platform for studying diverse mass transport mechanisms. In this work, we systematically investigate the transport of solvent vapors through 2D channels made of graphene oxide (GO) laminates with precisely controlled oxygen content. Using in-situ chemical reduction of GO with vitamin C, we fabricated reduced GO membranes (VRGMs) with oxygen content systematically decreased from 31.6 % (pristine GO) to 24.0 % (VRGM-maximum reduction). Vapor permeability measurements showed a distinct correlation between oxygen functional groups and solvent transport behaviour. Specifically, non-polar hexane exhibits 114 % of enhanced permeance through the reduced membranes with larger graphitic domains, while the permeance of water decreases by 55 %. With the support of density functional theory (DFT) simulations, we modelled the hydrogen-bond and dispersion complexes between the solvents and GO and calculated the complexation energies. The simulation results suggest that polar molecules interact with the oxygen functional groups of GO via a hydrogen-bond network, supporting in-plane transport. In contrast, van der Waals forces drive the transport of low-polarity solvents along the graphitic domains of the 2D channel in reduced GO membranes. Our findings provide potential strategies for future design of organic solvent nanofiltration membranes.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"243 ","pages":"Article 120539"},"PeriodicalIF":10.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic solvent transport through reduced graphene oxide membranes with controlled oxygen content\",\"authors\":\"Hongzhe Chen , Tongxi Lin , Zeno Rizqi Ramadhan , Aditya Rawal , Yuta Nishina , Amir Karton , Xiaojun Ren , Rakesh Joshi\",\"doi\":\"10.1016/j.carbon.2025.120539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in membranes based on 2-dimensional (2D) materials have enabled precise control over angstrom-scale pores, providing a unique platform for studying diverse mass transport mechanisms. In this work, we systematically investigate the transport of solvent vapors through 2D channels made of graphene oxide (GO) laminates with precisely controlled oxygen content. Using in-situ chemical reduction of GO with vitamin C, we fabricated reduced GO membranes (VRGMs) with oxygen content systematically decreased from 31.6 % (pristine GO) to 24.0 % (VRGM-maximum reduction). Vapor permeability measurements showed a distinct correlation between oxygen functional groups and solvent transport behaviour. Specifically, non-polar hexane exhibits 114 % of enhanced permeance through the reduced membranes with larger graphitic domains, while the permeance of water decreases by 55 %. With the support of density functional theory (DFT) simulations, we modelled the hydrogen-bond and dispersion complexes between the solvents and GO and calculated the complexation energies. The simulation results suggest that polar molecules interact with the oxygen functional groups of GO via a hydrogen-bond network, supporting in-plane transport. In contrast, van der Waals forces drive the transport of low-polarity solvents along the graphitic domains of the 2D channel in reduced GO membranes. Our findings provide potential strategies for future design of organic solvent nanofiltration membranes.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"243 \",\"pages\":\"Article 120539\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000862232500555X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862232500555X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Organic solvent transport through reduced graphene oxide membranes with controlled oxygen content
Recent advances in membranes based on 2-dimensional (2D) materials have enabled precise control over angstrom-scale pores, providing a unique platform for studying diverse mass transport mechanisms. In this work, we systematically investigate the transport of solvent vapors through 2D channels made of graphene oxide (GO) laminates with precisely controlled oxygen content. Using in-situ chemical reduction of GO with vitamin C, we fabricated reduced GO membranes (VRGMs) with oxygen content systematically decreased from 31.6 % (pristine GO) to 24.0 % (VRGM-maximum reduction). Vapor permeability measurements showed a distinct correlation between oxygen functional groups and solvent transport behaviour. Specifically, non-polar hexane exhibits 114 % of enhanced permeance through the reduced membranes with larger graphitic domains, while the permeance of water decreases by 55 %. With the support of density functional theory (DFT) simulations, we modelled the hydrogen-bond and dispersion complexes between the solvents and GO and calculated the complexation energies. The simulation results suggest that polar molecules interact with the oxygen functional groups of GO via a hydrogen-bond network, supporting in-plane transport. In contrast, van der Waals forces drive the transport of low-polarity solvents along the graphitic domains of the 2D channel in reduced GO membranes. Our findings provide potential strategies for future design of organic solvent nanofiltration membranes.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.